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Abstract: Skin cancer is the main type of cancer that affects people all over the world, being
melanoma the most feared, due to its rapid spread throughout the body. If it is detected in the
early stages, the chances of cures are above 96%. Due to this, approaches to help the clinicians
in the correct diagnosis, as well as that focused on the explanations, have been largely explored.
In this context, this paper aims to build a binary classification of skin moles model using the
ResNet50 and explain its prediction by comparing two known explainer tools LIME and Decision
Trees (DT). The ResNet50 architecture achieved results of about 92% in terms of accuracy and
up to 91% in sensibility and specificity. When LIME and DT were compared, both showed no
fidelity error. However, in terms of stability, measured by the Jaccard index, LIME presented an
stability of 0.497±0.473 and DT of 1.0±0.0, showing stability only for the latter. These results
were obtained from 30 runs of images randomly chosen from the test base. Through a visual
analysis, LIME varied in two of the 5 images from the benign and in one from the malignant
lesion. As important as generating good classification models is providing clinicians with good
explanation models that are intuitive and consistent.
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1. INTRODUCTION

Although medical science has been going forward in the
last centuries most than ever, disease prognostics is still
a current demand in healthcare. For this, many Ma-
chine Learning (ML) approaches for medical diagnostic
have been applied using pattern recognition techniques
(Tschandl et al., 2019). One of them is the skin cancer
diagnostics from a set of images of the skin lesion, which
is the focus of this work.

The skin is the longest organ in the human body which
protects the body against heat, light, and infection, besides
helping to control the body temperature and to store the
fat and the water (Zhang et al., 2020). Skin cancer is
the most common type of cancer, responsible for 70%
of the diagnostics (Tschandl et al., 2019). In this sense,
skin cancer preventive detection is a key role to anticipate
people’s treatment, and also prevent some variants, such
as focal cell carcinoma and melanoma (Zhang et al., 2020).

This pathology is primarily diagnosed through visual in-
spection, starting from initial clinical screening to dermo-

scopic analysis, biopsy, and histopathological examination
(Esteva et al., 2017). The most aggressive skin cancer is
melanoma since it can spread quickly to other organs.
Occasionally, it also spreads through the lymphatic or cir-
culatory system and can achieve the farthest points of the
body. However, the percentage of the cure for those who
have early diagnosis varies between 96% to 99% (Esteva
et al., 2017).

Jaleel et al. (2013) mentioned some inconveniences in
dealing with melanoma: (i) the first wound of the disease
can be the path for new ones; (ii) the biopsy method may
cause inflammation or even spread of lesions; and (iii) there
is a similarity between benign and malignant melanomas
which takes more attention by the clinicians. Although the
diagnosis made by the doctor is reliable and valuable, there
is a need for non-invasive approaches. However, many of
them take lots of time and require high cognitive efforts,
while the computer vision-based approaches can be used
to help the medical team in having a more accurate clinical
diagnosis (Mehta and Shah, 2016).
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The commonest rule used by specialists to classify the
lesion as benign or malignant is named ABCDE, or Asym-
metry, Border, Color, Diameter, and Evolving. Asymmetry
refers to the shape of the lesion when half of the lesion does
not match the other one. Also, irregular borders and colors
indicate the possibility of melanoma diagnosis. Regards
the size of the lesion, generally, melanoma is greater than
6mm. Then, anomalies in one or more of those parameters
indicate the malignancy of the lesion.

Similarly, the application of the Convolutional Neural Net-
works (CNN) has presented prominent results in solving
this kind of problem-based on the ABCDE and/or other
rules. Sometimes the result obtained surpasses the results
of specialist doctors (Brinker et al., 2019; Esteva et al.,
2017). However, misclassifications in skin cancer diagnos-
tics may lead to serious clinical consequences, delaying
the treatment or even more complicated issues. Due to
this, there is a need for a better understanding of the
results from the CNN classifiers, which is directly related
to Explainable Artificial Intelligence, or simply XAI.

The XAI help to understand the regions of the images
that are significant for the predictions, and consequently
leads to a confident result by the specialist point of view
(Van Der Velden et al., 2022; Alves et al., 2021; Ferreira
et al., 2020; Santos et al., 2021). The Local Interpretable
Model-agnostic Explanations (LIME) (Ribeiro et al., 2016;
Yu, 2018) and Decision Trees (DT) (Loh, 2011) have been
used for this purpose. They allow the specialist a better
understanding of the reasons that justify the prediction
made by the learning method.

It is known that most existing XAI focus on structured
data. However, some methodologies can help in the inter-
pretation of deep networks. According to Van Der Velden
et al. (2022), saliency mapping is the most common form of
XAI in medical image analysis since it shows the important
parts of an image for a decision, often based on back-
propagation techniques. Perturbation-based approaches
can be also mentioned. It creates new instances by per-
turbing input data and then, measuring how perturbed
input data changes the output, as in LIME. Both of them
highlight the image’s area important to the prediction. By
knowing that, the specialists may evaluate if the model
may capture the relevant knowing information.

With this in mind, this work proposes a quantitative
and visual comparison of the explanations provided by
LIME and DT for the classification of skin cancer le-
sions. Although it is widely used for image interpretation,
some works show that when applied to structured data,
LIME may have low local fidelity and stability for its
explanations (Ferreira et al., 2020; Santos et al., 2021).
Thus, we propose to investigate whether these problems
are also observed in the interpretation of deep learning
and whether when the internal model used to adjust the
data is changed, from a simple linear model to a DT, if
significant changes are observed in the evaluated metrics.

Additionally, another aspect worth mentioning is that
in the last few years, many regulations for data usage
and IA systems were proposed around the world. The
Europe Union have proposed the General Data Protection
Regulation (GDPR) to regulate and protect their people
from the effects of data processing and AI decisions. In

Brazil, since 2020 the “Lei Geral de Proteção de Dados”
(General Data Protection Law, in free translate) with
similar objectives to GDPR (Santos et al., 2021). In
this way, the XAI aims to reinforce the ways to achieve
explainability and interpretability for image data.

The rest of the paper is organized as follows: Section 2
describes related works pointing out those focused on the
automatic diagnosis of skin cancer. Section 3 details the
materials, methods and experiments. Section 4 describes
and discuss the results. Finally, Section 5 concludes the
paper and presents directions.

2. RELATED WORKS

Scientific advances have made it possible to improve the
equipment that helps in the diagnosis of skin cancer, but
they still may fail. Computerized techniques, such as CNN,
serve as an important support tool for medical diagnosis
since many of these systems were able to surpass human
specialists in this diagnosis (Tschandl et al., 2019). The
joint application of these two experts (dermatologist +
specialist systems) aids to bring more confidence to the
diagnosis, reducing the cost of diagnosis and the compli-
cations that may occur when the patient is submitted to
specific exams.

Different systems were proposed to deal with that problem.
Some of them are based on the traditional ML models
(Alves et al., 2021; Vidya and Karki, 2020; Javaid et al.,
2021), while other ones apply DL or ensemble methods
(Thurnhofer-Hemsi and Dominguez, 2020; Daghrir et al.,
2020).

Javaid et al. (2021) and Vidya and Karki (2020) proposed
a binary classification for a skin lesion image input using
data from ISIC-ISBI 2016 repository. Although they used
different ML methods, the former achieved 93.89% of
accuracy with a model built with the Random Forest
(RF) algorithm and the latter 97.8% with Support Vector
Machines (SVM).

Different from the traditional methods, DL can also be
used to solve the skin cancer diagnosis problem with-
out using an image preprocessing task. Thurnhofer-Hemsi
and Dominguez (2020) implemented a multi-class problem
with seven classes: Actinic Keratoses, Basal cell carcinoma,
Benign keratosis, Dermatofibroma, Melanoma, Nevi, and
Vascular skin using the HAM10000 dataset. The main
concern with this dataset is that almost 70% of the im-
ages are of the Nevi class, which means that the data is
highly unbalanced. To circumvent this issue, the authors
proposed a two-level architecture, named DenseNet2021.
The first layer separates the Nevi class from the others,
while the second one classifies the other six classes. It was
reported a performance 10% better than the literature.

Another approach was proposed by Daghrir et al. (2020)
using a hybrid approach, combining the result of CNN,
KNN, and SVM methods. The authors presented a new
concept named “ugly duckling” regarding outliers data. In
the preprocessing stage, the hairs were removed from the
images, then the OTSU segmentation, and the ABCD, and
Blue-Black rules are applied. The final accuracy of 88.4%
was obtained from the majority vote of the three methods,
which overcomes each method’s results. Hosny et al. (2018)
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developed an architecture to classify color images of skin
cancer into three classes: Melanoma, atypical nevus, and
common nevus. As stated by the authors, this method
has the advantage over earlier computer-aided methods
for this purpose because it can work with any type of
image (dermoscopic and photographic), besides it is not
necessary for any preprocessing, since it works directly
with the colored skin images.

Regarding interpretable systems, Thomas et al. (2021)
proposed interpretable deep learning methods for multi-
class segmentation and classification of non-melanoma skin
cancer, in which outputs of the network are present in an
interpretable way and can be visualized in several forms to
distinguish its capabilities. Jiang et al. (2021) introduced
a new deep learning-based approach for the automated
diagnosis of skin cancer, named “DRANet” and a “Class
Activation Map” (CAM) to obtain visual explanations
from the deep neural network. As argued by the authors,
“the CAM can convert the output of attention modules to
a heat map showing key areas where the model focuses
more”. Xie et al. (2019), in its turn, the visualization of
CNN representations is present to identify cells between
melanoma and nevi.

As can be seen, although many classic ML and DL tech-
niques have been used to solve this problem, most of them
do not mention the use of transparent solutions or tech-
niques to interpret the results achieved. As a result, post-
hoc methodologies, which can be applied after the system
is ready, greatly contribute to the system’s reliability as
well as to its implementation and maintainability. Exam-
ples of LIME applications for generating explanations of
individual predictions of DL models in the medical field
include Parkinson’s disease diagnosis Magesh et al. (2020),
ophthalmology (Hanif et al., 2021), and the proper skin
lesion diagnosis (Xiang and Wang, 2019). DTs, outside
the DL context, have been used for a local explanation as
in Alves et al. (2021). These authors proposed a local DT
Explainer, or “DTX”, for COVID-19 detection.

This paper applies the known Residual Neural Network
(ResNet50) (He et al., 2016) in the ISIC-Archive dataset
to make the binary classification of skin cancer (benign
or malignant). For providing the explanations provided by
the proposed ResNet50 architecture, it was used LIME
and DT explainers and evaluated in terms of fidelity and
stability.

3. MATERIAL AND METHODS

3.1 Dataset

The ISIC-Archive dataset, publicly available at Kaggle
(2019), contains a balanced dataset of images of benign
and malignant skin moles. The data is present in two
folders with 1800 pictures (224×244) of the two types of
lesions, labeled and previously divided into training and
testing data. However, for evaluation purposes, it is going
to be redivided using the re-sampling technique named
k-fold cross-validation. Figure 1 presents an example of
benign and malignant lesions from this dataset. Since the
images are already the proper size for deep net training,
resizing them is not necessary.

(a) Benign lesion (b) Malignant lesion

Figure 1. Examples of a skin lesion in the ISIC-Archive
dataset

Source: Kaggle (2019)

3.2 RestNet50 Architecture

The ResNet50 (He et al., 2016) is an artificial neural
network based on pyramidal cell constructs in the cerebral
cortex. This network was proposed in a context where the
deep networks known so far had a limitation in increasing
the number of layers. It was observed that after a certain
number of internal convolutional layers, the training and
test error start to increase since the error back-propagation
does not reach the first layers.

To build this network, convolutional layers are grouped
employing the so-called ResBlock, illustrated in Figure 2,
through “skip connections” that help in back-propagating
the error, and consequently avoiding the gradient explo-
sion. These connections provide an alternative gradient
shortcut path to flow through. Also, they allow the model
to learn an identity function that guarantees that the
top layer will outperform the bottom layer at least as
well, and no worse. This model was the winning entry in
the ImageNet competition in 2015. The key advance with
ResNet was enabling the training of extremely deep neural
networks with more than 150 layers.

Figure 2. ResBlock
Source: He et al. (2016)

The ResNet has variants with different numbers of convo-
lutional layers. The used notation used is the name ResNet
followed by a number that specifies how many layers the
network has. Here, we choose the ResNet-50 variant, in
virtue of the good performance of this architecture to solve
image recognition problems (Fulton et al., 2019).

The network takes the input image with height, width,
and 3 channels. Initial convolution is performed applying
7×7 and 3×3 kernel sizes, respectively, followed by the
maximum clustering. The ResNet50 architecture has 4
stages: stage 1 has 3 residual blocks with 3 layers each, and
the kernel sizes used to perform the convolution operation
on all 3 layers of the block in this stage are 64, 64, and 128

Sociedade Brasileira de Automática (SBA) 
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022 

ISSN: 2525-8311 0295 DOI: 10.20906/CBA2022/3215



respectively. From one stage to the next, the input size is
halved while the channel width is doubled.

In addition, for each residual function, 3 layers are stacked
on top of each other. The three layers are 1×1, 3×3, 1×1
convolutions. The 1×1 convolution layers are responsible
for reducing and restoring the dimensions. The 3×3 layer is
left as a bottleneck with smaller input/output dimensions
(Sachan, 2019). In the end, average pooling is applied
followed by a fully connected layer with 1000 neurons.

3.3 Network Interpretability with LIME and DT

The Local Interpretable Model-agnostic Explanations
(LIME) is a framework that explains how the input at-
tributes of an ML model impact its output predictions.
In the case of image classification, LIME determines the
sub-regions of an image (set of superpixels) with the
strongest association with a prediction label. To generate
explanations for a black-box model for a specific instance,
LIME creates a new dataset from random perturbations
(with their respective outputs) around the sample to be
explained and then fits a weighted local surrogate model.
This local model is usually a simpler model with intrinsic
interpretability such as a linear regression model. It gen-
erates explanations with the following steps:

(1) Generate random perturbations around the image to
be explained;

(2) Obtain the predictions of the DL model for perturba-
tions;

(3) Compute the importance of the perturbations (for
each super-pixel, which represented the features of
the image);

(4) Fit is an explainable linear model using the pertur-
bations, predictions, and weights.

Using these steps it is possible to verify which parts of
the lesion were the most important for the prediction as
benign or malign.

Decision Trees (DT), in its turn, are widely used statis-
tical methods for classification and regression tasks. This
method partitions the feature space recursively into sub-
regions, from an impurity function. In a DT, each of the
internal nodes, including the root node, represents a hy-
perplane that is parallel to the attribute axis used for this
partitioning. The leaf nodes, on the other hand, represent
the classes of the problem, so that the path between the
root node and the leaf node used to make a prediction is
easily identified.

Due to this, this approach is remarkably interpretable, and
by using the same strategies of LIME, evaluating the vicin-
ity of the sample of interest, may be applied to generate
local explanations. The main difference between these two
approaches concerns the adjustment of the interpretable
method since LIME uses a simple linear model and DT
uses the structure itself to provide explanations.

For sake of simplicity, an overview of the proposed method-
ology is shown in Figure 3.

3.4 Evaluation Metrics

The explanation was evaluated in terms of fidelity and
stability. Fidelity refers to how well the surrogate method

can replicate the behavior of the black-box method locally.
Given the perturbation of the superpixels, which generates
new samples, and the respective prediction value, the
percentage of correct answers of LIME and DT for each
perturbation i is verified and compared with the value
generated by the black box. In other words, the learning
error of the surrogate method is verified by checking the
behavior of the opaque ML. Mathematically, this concept
may be understood equals to the known Mean Squared
Error (MSE) between the probability prediction made for
the model and the explainer, as presented in Equation (1).

err(f) =
1

N

N∑
i=1

(y
′

i − yi)
2 (1)

where f represents the approximation function between
the model and the explainer. y′ is given by the surrogate
model and real value (y) for sample i, N the number of
samples evaluated.

Stability is expected for different runs of the explainer
applied to the same sample and in the same conditions to
generate the same explanation. To measure it, the Jaccard
index was used. It is a statistical measure used to assess
the similarity and diversity of sample sets. Thus, this index
evaluates the stability of the resource selection process,
since it is expected that the selected resources are similar,
meaning that the selection process is consistent. The first
metric is calculated from the intersection performed on
sets of two or more runs, divided by the union between
these two sets, according to Equation (2).

J(A,B) =
A ∩B

A ∪B
(2)

where A and B are two lists of the most important
features obtained in different executions using the same
parameters.

To know, the best possible value for approximation error
(or fidelity) is 0 meaning that there is no error between
the CNN predictions and the surrogate model. And the
best value for the Jaccard index is 1, which means that
the model maintains stability when returning the most
important features.

3.5 Experimental Procedures

The code for the experimental procedure was developed in
Python, using the Keras package from TensorFlow (Gulli
and Pal, 2017). The network input images were already
sized appropriately for the input of RestNet50, from the
224×224. The normalization was carried out in the pro-
portion of 1/255. Data augmentation was performed at
run-time by applying the “ImageDataGenerator” function
that generates more specimens of both classes and conse-
quently identifies the relevant characteristics to differen-
tiate the characteristics of one lesion from another. Data
augmentation aims to build new instances through data
transformations. It was tested at different rotations, but
in the end, 20 degrees was used.

The batch size was defined as 34, and the training was
performed with 30 epochs. The convolutional layers were
configured with 64 filters and stride of 3 × 3 size. The
dropout rate was defined as 0.3. The pooling applied
was Max polling, with size 2 × 2, and the Dense layers
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the corresponding
classification for new skin

lesion images

We have chosen the
ResNet50

network as the black-box
models to be evaluated

(any black-box Deep Learning
model can be used)

Pre-trained model Explanation process

The image to be
explained is dived
into superpixels

New pertubations
of the original

Image are
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The pré-trained
model provides
the classification

for the pertubated
set

Malignant Benign Malignant Benign

LIME DT

The transparent model is
fitted using the

pertubation images and
their corresponding

classifications.

The relevant features are highlighted for each explainer.

Figure 3. Overview of the methodology adopted considering the (i) generation of a vicinity around a noise sample to
be explained, (ii) to obtain the predictions from the ML black-box model for the perturbed images, and (iii) the
fitted of these images with LIME and DT. With the transparent models, it is possible to explain the test case.

were activated by the Relu function, except the last one,
where was applied softmax function was. The filter size
was applied to follow the original definitions proposed
by He et al. (2016). The learning rate chosen was lr =
0.00001, with Adam optimization and cross-entropy as loss
function.

In short, the ResNet50 model from Keras library was used,
with image width and height of 224 x 224, a sequential
model, with a convolutional layer with 64 input filters and
a 3x3 dimension. Next, a dropout layer was added with
a rate equal to 0.3. Another convolutional layer with a
parametric configuration similar to the previous one. A
2 × 2 sized pooling max tier, plus a dropout tier at the
same rate of 0.3. Two dense layers with 512 and 256 filters,
respectively, plus another dropout layer. Six more dense
layers, with filter multiples of 2 ranging from 128, 64, ..., 2,
with all layers except the last one using the Relu activation
function, and the last layer doing the binary classification
applying a softmax.

The settings shown were obtained after variations in im-
age size and various data augmentation operations. The
parameters mentioned above correspond to the best con-
figuration for the ABCD rule.

For LIME and DT, the superpixels were generated using
the Quickshift segmentation method, with kernel size equal
to 3 and ratio 0.4, which were parameterized using the
skimage package (Van der Walt et al., 2014). A set of 200
new samples were generated around the image of interest
(perturbations of x), based on the binomial distribution,

with n = 1, p = 0.5, being n the number of trials, and p
the probability of success.

The samples to be explained were randomly picked from
the test set, with a 50% probability of generating a
sample that corresponds to a benign lesion, and 50% for
malignant.

Fidelity and stability refer to 60 executions, both for
LIME and DT. To compute stability, for each random
sample, the explanation method is run 2x using the same
hyperparameters, generating two lists of best attributes,
following the Jaccard index. Fidelity is computed only
once for each sample. Therefore, a total of 60 runs were
performed, resulting in 30 values for stability and fidelity
for each method of explanation.

4. RESULTS

The increase in data with the shift in the width and height
of the image was removed since one of the aspects assessed
by specialists when applying the ABCD rule considers
the diameter of the lesion, and data augmentation with
noise and contrast application has been added. However,
no improvements were observed in relation to the accuracy
values obtained in the training and test bases. Thus, other
parameters were tested, and the change in the learning rate
showed differences in the final result when only rotations
are performed to increase data (without applying noise,
contrast, and shifts). In addition, 20 epochs in total were
performed, and rotation was also changed, from 45º to 20º.
The results are presented in Table 1.
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Table 1. ResNET50 performance

Training Test Sensibility Specificity

0.999± 0.002 0.921± 0.006 0.914± 0.015 0.917± 0.001

The Table 2 shows the results obtained for the stability
and fidelity of the evaluated explainers. It was applied
Mann-Whitney U Test. It was found that the stability
has significant mean differences in the level of 95% of
confidence.

Table 2. Interpretability methods evaluation

Method Stability

LIME 0.497± 0.473

DT 1.0± 0.0

z-score 3.54087

p-value 0.0004

Two images from the test set were chosen randomly
for evaluating the stability of the LIME and DT: one
representing a benign lesion and the other a malignant one.
Figure 4 illustrates the explanations provided by LIME
and DT for an image that represents a type of benign
skin cancer lesion (left). Through visual analysis of the
benign lesion it is possible to note that the LIME was
not consistent for two of the five samples presented (inside
the red line), while the Decision Tree showed the same
explanations in each run of the experiment.

Figure 5 also illustrates the explanations for LIME and
DT, but now for a malignant lesion, shown on the left. In
this case, LIME showed different results in the explanation
for one of the five images, indicated inside the red line.
DT, as in the previous case, was consistent for the five
examples.

As argued in the literature, explanation models should be
used as decision support tools by the experts helping them
in their daily activities. DTs, in this case, showed more
promising results than LIME through the visual analysis.
It is known that decision trees can present the decisions
themselves for the final prediction. In practical terms, it
can be very interesting to evaluate the final DT decision
based on internal decisions. This could also support the
classification outcome and assist readers in understanding
the explainable process. This is a very interesting reason
for applying decision trees for explainability purposes.
Finally, it is important to evaluate the correlation between
visual insights provided by experts and visual insights
provided by XAI techniques to analyze the match between
the accuracy level and agreement between computational
and manual segmentation.

5. CONCLUSIONS

Skin cancer diagnosis through images plays an important
role in the treatment of the disease. Since the initial
analysis is often done with a visual inspection, which takes
a lot of time and cognitive effort, this article aims to
assist in this task to automate the diagnosis and make it
more interpretable for the analyst. Using a public dataset,
an architecture using the ResNet50 is built. Then, LIME
and DT are invoked to analyze the interpretability of the
model.

Both LIME and DT presented good performance regarding
fidelity. However, the stability of LIME was lower than
that of DT in some test examples. Through a visual
analysis of the main parameters that each model used to
explain the diagnoses, it was possible to perceive better
stability of DT to LIME – since the features were always
maintained in the test examples.

This work is part of a context little explored in the
literature, up to now, since much of the research in the
XAI area is focused on structured data and with the classic
ML models. An example of this is that most existing XAI
models are easily applicable post-hoc to ML models, which
is not the case for DL methods. At the same time that
XAI moves to meet existing (and necessary) regulations,
it needs to be accessible to methods in the field of computer
vision, as these are also widely used in the literature and
applied to a multitude of problems.
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