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Abstract: Testing with robots and especially with large agricultural robots is a task that requires
high costs, risks and depends on weather conditions. Although there is a gap between simulation
environments and real environments, simulation environments offer the advantages of being
totally safe, making it possible to verify the performance of the control algorithm and even
have the possibility of simulating sensors and actuators that have not yet been physically
implemented. In addition, simulation enable risk-free assessment and adjustment of new control
methods before implementation in real systems. In this work, we propose an approach to
run experiments with Deep Reinforcement Learning (DRL) algorithms using Robot Operating
System (ROS) and Gazebo robotics simulator. For this purpose, we use the robo-gym framework
to interface between the DRL algorithm and the simulation using an OpenAI Gym environment,
and augmented the capacity of Gazebo using the gazebo-fmi-actuator plugin that allows co-
simulation with Functional Mock-up Unit (FMU). It is also presented an application of the
simulation and control of the hydraulic steering system of a large agricultural robot using
a Deep Deterministic Policy Gradient (DDPG), Soft Actor Critic (SAC), and Twin Delayed
DDPG (TD3) DRL algorithms and comparing they with a PID controller.

Keywords: Simulation, Reinforcement learning control, Functional Mock-up Unit, Robot
Operating System

1. INTRODUCTION

Autonomous agricultural robots must move in a dynamic
and semi-structured environment, they need to be pre-
pared to operate in open field subjected to different
types of terrain, regular and irregular, non-homogeneous,
changeable and unpredictable, which presents a difficult
challenge for the steering controller design (Taghia and
Katupitiya, 2020; Sparrow and Howard, 2021; Oliveira
et al., 2021). Concerning Artificial Intelligence, this means
dealing with an open world, so the techniques to allow
for adaptation during operation rather than in the design
phase are crucial. Techniques that allow robots to learn
from experience include reinforcement learning, demon-
stration learning, and transfer learning (Duckett et al.,
2018).

Testing in real environment is costly, simulators allow risk-
free evaluation and adjustment of new control methods be-
fore implementation in real systems. Developing a virtual
model for a robot helps in testing and experimenting in
different environments, so the risk to the real robot can
be mitigated by detecting some possible errors and design
flaws before any real world experimentation is conducted,
which leads to increased confidence in the robustness of
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the developed solutions and reduces the time required for
integration and failure detection (Young, 2019).

A description and comparison of robotic simulation soft-
ware between V-REP, Gazebo, ARGos, Actin is presented
in Shamshiri et al. (2018), and a comparison in the scope of
robotics and RL between Gazebo, MuJoCo, PyBullet and
Webbots in presented in Körber et al. (2021), these simu-
lators are based on rigid body physics engines. Although
the simulator features are similar, Gazebo integration with
ROS is an asset if the control interface for the simulated
and real robot is envisaged to be the same. However, some
actuators cannot be expressed using the Gazebo physics
engine. An approach is to develop a custom gazebo plugin
for the actuator, it requires a C++ programming expertise
and significant knowledge of the Gazebo simulator (Lange
et al., 2021).

Reinforcement learning algorithms require trial and er-
ror tests. Therefore, a simulation environment makes the
learning process safe, being possible to detect errors and
failures before it is implemented in the real robot. Al-
though ROS and Gazebo are excellent tools for developing
and simulating robots, they are not designed for running
RL experiment, since they do not have sufficient tools to
train an RL agent in a complex environment. Furthermore,
Gazebo only simulates the rigid body dynamics, but it is
not enough to simulate the complexity of some robotics
actuators. This paper presents an approach to run DRL
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experiments in a simulated robot with complex actuators
using open-source software. It is also presented an applica-
tion of the simulation of the steering control of the wheel
of a large agricultural robot using a DDPG, SAC and TD3
algorithms and comparing they with a PID controller.

2. METHODOLOGY

We decided to use Gazebo simulator and ROS middle-
ware to develop the simulation environment, due to the
compatibility and large community and acceptance in
the academic and industrial sector. Furthermore, we use
the robo-gym framework to develop the environment and
train the RL agent (Lucchi et al., 2020) and use the
gazebo-fmi-actuator plugin for augmenting the capacity
of Gazebo simulator allowing to co-simulate FMUs inside
Gazebo (Lange et al., 2021). In the following sections, we
describe the procedure to develop the simulation environ-
ment to run DRL experiments on a simulated robot.

2.1 Modeling method

The first step is to develop the robot model description
in the Unified Robot Description Format (URDF), which
is a standard specification for describing robots. The
procedure for the development of the URDF can be seen in
Fig. 1. The URDF defines the robot model representation
in Extensible Markup Language (XML) format, using a
description of links and joints, where are defined the
kinematic, dynamic, visual, and collision properties.

Links The links contain name information, physical
mass and moment of inertia parameters, visual and col-
lision properties.

Joints Joints are defined by name, type, parent link, and
child link properties. Optionally, joints can be also defined
by properties corresponding to each type of joint.

Transmissions Transmissions are an extension of the
URDF robot description that associates a joint with an
actuator, this allows the transmission to have a desired
control of the robot links and allows the interface between
a real robot and a simulated one in Gazebo.

2.2 robo-gym framework

The robo-gym framework is an open-source toolkit to
run DRL experiments on real ad simulated robots. The
framework is shown in Fig. 2 with dash lines, its principal
components are the Robot Server (RS), Robot Manager
(RM) and the Command Handler (CH). robo-gym uses
the OpenAI gym interface and allow using open-source
implementation of DRL algorithms (Lucchi et al., 2020).

To create a robo-gym custom environment, it is necessary
to adapt the current environment to send the robot states
and receive commands to execute through the RS using
Google Remote Procedure Call (gRPC) messages. The RS
interacts with the ROS Bridge routine, which is a ROS
routine that collects the state of the robot and receive
the commands to send to the robot. It is also necessary to
create a custom CH routine to adapt the actions command
received from the ROS Bridge to as a Markov Decision

Figure 1. URDF development procedure

Processes to send discrete commands in a controlled period
of time. Furthermore, it is recommended to create a
routine to publish the state of the robot to a ROS topic
that can be accessed by the ROS Bridge. Finally, create
a OpenAI gym custom environment to train the RL
agent and receive the states and send actions command
to the Robot Server. With the custom environment, we
can run experiments using an open-source implementation
like Stable baselines (Hill et al., 2018) or with customs
algorithms.

2.3 gazebo-fmi-actuator plugin

The gazebo-fmi-actuator is one of the plugins in the
gazebo-fmi, it permits co-simulation of an actuator dy-
namic inside Gazebo simulator. With this plugin, it is
possible to simulate the actuator dynamics that Gazebo
by itself cannot. The gazebo-fmi-actuator plugin can be
used transparently with any joint specified in the URDF,
and it can be controlled using ros_control package and
gazebo_ros_pkgs.

The actuator plugin is limited to one degree of freedom
model, this mean that it can only have a single actuator
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Figure 2. Simulation environment development method

controlled input (actuatorInput) and a single actuator
output jointTorque. The input is the control signal and
could have any unit, this input can read the value of the
joint force that is set by the ros_control. The output is
always a torque in the case of a revolute joint or a force in
the case of a prismatic joint. The plugin has tree additional
inputs that represent the joint position (jointPosition),
the joint velocity (jointVelocity), and the joint accel-
eration (jointAcceleration), this input cannot be con-
trolled and are obtained from the Gazebo joints (Lange
et al., 2021).

Co-Simulation Functional Mock-Up Units The Co-
Simulation FMU is a file that contains their own numeri-
cal solver, specified by the Functional Mock-Up Interface
(FMI) standard (Blochwitz et al., 2012). The FMU can be
generated using any modeling software that support the
FMI standard and that has a tool to export the simulation
model to an FMU. Then, we can execute the FMU during

Figure 3. Agribot Dimensions

a simulation run with another software that can import
the FMU.

There are two main limitations to modeling the FMU to
use with the gazebo-fmi-actuator plugin. The first is
the FMU Co-Simulation solver, that could be not powerful
enough to solve very complex models, like OpenModelica
uses the Euler solver as default. The second is the Gazebo
physics max_step_size parameter, that limits the FMU
integration step size. The max_step_size parameter de-
fault value is 0.001 second, high step size could cause
high FMU integrations errors that could cause a poor
simulation or even the FMU couldn’t solve the model. On
the other hand, low size step values increase the simulation
time, that is a major factor in the DRL agent training.

3. APPLICATION

As application, we developed the simulation environment
for the Agribot, the control task is a servo problem for
steering the wheel to a given reference. The Agribot is
a large modular robotic platform capable of moving in
typical environments in the agricultural area for data
acquisition and research. As show in Fig. 3, the Agribot
has a structure with a gantry format with 1.8 m between
the ground and the base of the chassis, it also has an
adjustable gauge system that can be adjusted from 2.25 m
to 2.4 m that serves to adjust the front distance between
vehicle axles. It has a mechanical system consisting of
a diesel engine that provides power for the hydraulic
propulsion system and hydraulic steering system. (Tabile,
2012; Torres, 2014; Archila, 2016).

The development of the simulation environment, start with
the input information of previous works, the Agribot 3D
SolidWorks model, and the Hydraulic Steering System
circuit drawings. With the 3D CAD model, we create the
URDF, and with the hydraulic steering circuit drawings,
we develop the simulation model to export to FMU. Fi-
nally, we use the framework robo-gym to create the simu-
lation to train the RL agent in the simulated environment.
The next sections will describe in more detail each part of
the followed procedure.
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Figure 4. Agribot Links

3.1 Agribot Robot Description modeling

The Agribot was divided into 22 links, Fig. 4 shows the
links by color where: a) Main Chassis ; b) Upper Chassis
; for each of the steering modules (front left, front right,
rear left and rear right) c) Steering Module Support; d)
Hydraulic Cylinder ; e) Steering Module; f) Suspension
Module and g) Wheel.

The diagram shown in Fig. 5 shows the hierarchy of links
and joints simplified for the general case of a wheel. The a)
Main Chassis is the base link that has as child link the b)
Upper Chassis links and the c) Steering Module Support
link, with fixed joints each one. The Steering Module
Support includes a hydraulic cylinder that has two children
link, the d) Hydraulic Cylinder Rod link with a prismatic
joint, and the e) Steering Module link with a revolute
joint. There is a rack and pinion mechanism between the
d) Hydraulic Cylinder Rod (rack) and e) Steering Module
(pinion), the hydraulic cylinder in the c) Steering Module
Support moves the rack that transmits the movement
to the pinion to steer the wheel. There is also a closed
kinematic chain between the links c) Steering Module
Support, d) Hydraulic Cylinder and e) Steering Module, to
represent this joint, a mimic property is created inside the
e) Steering Module joint that mimics the movement of the
d) Hydraulic Cylinder Rod joint by a conversion factor,
in this case, it transmits the movement of the rack linear
with rotational movement of the pinion. The e) Steering
Module has as a child link the f) Suspension Module with
a prismatic joint, and the f) Suspension Module has as a
child link the g) Wheel, which moves the robot due to the
friction of the wheel with the floor.

For the simplicity of the model, and due to the mimic joint
only work for visualization in RViz and not in Gazebo, the
prismatic joint of the e) Steering Module Support and d)
Hydraulic Cylinder Rod links and the prismatic joint of
the e) Steering Module and f) Suspension Module links are
set to fixed joints. Thus, the revolute joint between the c)

Figure 5. Diagram of Agribot links and joints

Steering Module Support and the e)Steering Module, and
the continuous joint between the f) Suspension Module
and the g) Wheel, are the two only mobile joints in the
URDF model.

The Agribot URDF model was created based on the Agri-
bot 3D detailed model provided in SolidWorks 3D model.
The 3D SolidWorks model was exported to Autodesk
Fusion 360 software to remove all unnecessary details
for the simulation, merge the fixed parts, and set the
joints for mobile links. Fig. 4 shows the simplified 3D
model, which is composed of only 22 parts out of the 948
parts of the original model. The initial URDF was created
thanks to the Fusion2URDF script (Kitamura, 2020) from
the 3D simplifies model, then it was modified to have all
Agribot properties described above. The inertia and mass
properties of the URDF were taken from the SolidWorks
3D detailed model.

3.2 Hydraulic Steering System Modeling

The hydraulic steering system is responsible for the move-
ments of the wheels through a hydraulic cylinder, using
a closed-loop control. It has as a control signal the duty
cycle of a PWM (0% to 100%) in the proportional valve of
the actuator and the signal from the linear potentiometer
as feedback. The parameters of the hydraulic model were
obtained from the manuals of the hydraulic pump, pro-
portional valve Hydraforce (2008) and hydraulic actuator
manufacturers and the data provided in the works of
Torres (2014).
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Figure 6. Diagram typical valve Performance

In the work of Tabile (2012) describes some problems
related to the steering hydraulic system that hinder the
development of the control of the steering system. The
principal issues are the delay of the hydraulic system due
to the slow response time and high inertia of the hydraulic
actuators; the non-linearity and saturation limit of the
electrohydraulic cartridge proportional valve solenoids as
shown in Fig. 6; difference between the area of the piston
cylinder and the rod; and the inertia of the steering system
due to friction in different terrains.

The gazebo-fmi-actuator plugin is used transparently
with the steering joints of the Agribot, and is called in
the start of the simulation. The CH sent the action to
the joint effort controller managed by the ros_control
package, then gazebo_ros_control set as an effort to
gazebo. The action is not necessary an effort command
it could be voltage in case of electric motors, in this case
we use the duty cycle percent of PWM of the directional
valve of the actuator. The gazebo-fmi-actuator plugin
reads the effort value that was set, and it passes to
the FMU as the actuator Input, it then runs the FMU
simulation, and returns the result effort to the joint to
continue the Gazebo simulation. The flowchart in Fig. 3
shows the proposed solution using robo-gym framework
for a simulated environment using gazebo and the gazebo-
fmi-actuator plugin. We use the OpenModelica modeling
tool to develop the hydraulic steering system, using lookup
tables to emulate the non-linearity of the proportional
valve, then export the model to a FMU.

3.3 The Learning algorithm

To showcase the difference between using the simulation
of the FMU and to compare DRL algorithm with a
classical PID control, we run multiple experiments with
six configurations:

(1) no FMU + PID
(2) no FMU + DDPG
(3) FMU + PID
(4) FMU + DDPG
(5) FMU + SAC

Figure 7. Learning Curve

(6) FMU + TD3

We use the DDPG, SAC and TD3 algorithm proposed by
Lillicrap et al. (2019), Haarnoja et al. (2018) and Fujimoto
et al. (2018) respectively. We also use the Stable baseline
open-source standard implementation of the algorithms
to run the experiments. The hyperparameter using in
the experiments are the default, and we use the policy
LnMlpPolicy that implements actor critic, using an MLP
(2 layers of 64), with layer normalization (Hill et al., 2018).

The observation space was the current angle of joint
(θjoint), the reference angle (θref ) and the joint velocity
(ωjoint) . The action space was the duty cycle percent
of PWM of the proportional valve between -1 to 1. The
reward function is shown in equation (1). We train the
agent using the FMU simulation with 5000 episodes of 100
time steps.

r(s, a, s′) = −(|θref − θjoint|+ 0.01ω2
joint) (1)

4. EXPERIMENTAL RESULTS

The agent learning curve is shown in Fig. 7 for the
three algorithms. The best agent model was saved to be
used for comparative with a PID controller for the FMU
experiments. The Fig. 8 shows the result for the simulation
without FMU for the DDPG agent, in these case the
performance of PID controller is slightly better than the
DDPG algorithm, worth noting that the DDPG agent was
trained only using the FMU simulation. In Fig. 9 is shown
the result of the test using the FMU simulation, in this case
we use the DDPG, SAC and TD3 algorithms. Further work
is necessary to enhance hydraulic steering system model to
include more components, in the current simulation only
was included the proportional valve solenoids non-linearity
using lookup tables, if we include more complexity in
the hydraulic model is expected that DRL agents greatly
exceed the PID controller.
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Figure 8. Test with no FMU

Figure 9. Test with FMU

5. FUTURE WORK

The present work proposes an approach to simulate com-
plex actuators inside a simulation environment to run DRL
experiments applied to control of a hydraulic actuator to
steering the wheel of a large agricultural robot. Further
investigation is required to validate the simulation model,
especially the FMU of the hydraulic actuator. Further-
more, it is necessary to evaluate the performance of the
DRL algorithm, since robo-gym permit to train a simu-
lated and real robots using a common interface and allows
running parallel instances.
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robótica agŕıcola móvel. Dissertação de Mestrado,
Universidade de São Paulo, TESE 8776. doi:
10.11606/D.18.2017.tde-16112017-113717. URL
http://www.teses.usp.br/teses/disponiveis/18/
18145/tde-16112017-113717/.

Young, H. (2019). ARDEE: A General Agricultural
Robotic Development and Evaluation Environment.
Ph.D. thesis.

Sociedade Brasileira de Automática (SBA) 
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022 

ISSN: 2525-8311 0263 DOI: 10.20906/CBA2022/3210




