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Abstract: Alzheimer’s disease is a degenerative brain disorder that affects millions of people
around the world and still without cure. A very common application of Hopfield neural networks
is to simulate a human memory as well as to evaluate problems of degeneration and memory
loss. On the other hand, from the control area, one has Lurie’s problem, which emerged in
the 1940s and which still does not have a general solution. However many works and results
came in an attempt to solve it. In this paper, the Hopfield’s network is shown as a particular
case of Lurie’s problem, then one of the consequences of Alzheimer’s disease, memory failure, is
modeled using Hopfield’s networks and finally a recent result of Lurie’s problem is applied to the
computationally modeled disease to correct the problem of memory loss. The correction is made
using a controller via DK-iteration. Simulations are performed to validate the computational
model of the disease and to demonstrate the effectiveness of the application of the recent Lurie’s
problem theorem. Therefore, in addition to the results presented, this work aims at encouraging
the researches in the area, so that in the future, better diagnostic and treatment conditions will
be achieved.

Resumo: A doença de Alzheimer é uma doença degenerativa do cérebro que afeta milhões de
pessoas em todo o mundo e ainda sem cura. Uma aplicação muito comum das redes neurais de
Hopfield é simular a memória humana, bem como avaliar problemas de degeneração e perda de
memória. Por outro lado, da área de controle, tem-se o problema de Lurie, surgido na década
de 40 que ainda não tem uma solução geral, porém muitos trabalhos e resultados surgiram na
tentativa de resolvê-lo. Neste artigo, a rede de Hopfield é mostrada como um caso particular do
problema de Lurie. Então, uma das consequências da doença de Alzheimer, a perda de memória,
é modelada usando as redes de Hopfield. Um resultado recente do problema de Lurie é aplicado
à doença modelada computacionalmente para corrigir o problema de perda de memória. A
correção é feita usando um controlador via iteração DK. Simulações são realizadas para validar
o modelo computacional da doença e demonstrar a eficácia da aplicação do recente teorema do
problema de Lurie. Portanto, além dos resultados apresentados, este trabalho visa incentivar as
pesquisas na área, para que, no futuro, sejam alcançadas melhores condições de diagnóstico e
tratamento.
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1. INTRODUCTION

In a woman of 51 years old, Alzheimer (1907) described
clinical observations, whose anatomical features were un-
usual to any previously known disease. The first symptom,
which the woman demonstrated, was the idea of being
jealous of her husband, and in a short time, she developed
a rapid memory loss. This terrible disease became known
by name of its discoverer. It is a degenerative disease that
leads to death, and one of its main consequences is the
loss of memory due to synaptic losses (Terry, 2000). Al-
though it has been documented more than a hundred years
ago, the understanding of its final cause still represents a
mystery to neuroscience.

Linked to neuroscience, the artificial neural networks
(ANN) are computational methods inspired in the func-
tioning of biological neurons, which has been widely used
in several areas, including medicine (Gil et al., 2009;
Al-Shayea, 2011). In particular, one has Hopfield neural
network (HNN), proposed by Hopfield (1984). HNN has
been applied considerably in several areas, like optimiza-
tion problems (Kaskurewicz and Bhaya, 1995) and other
applications such as presented in Braga et al. (2005):
implementation of an identification systems of military
target used in aircraft model B-52; user authentication
systems; oil exploration; prediction in the financial market.
Currently the network has awakened great interest by
theoretical, biological (Monteiro, 2006), because they can
simulate self-associative memory as cited by Iyerngar and
Balagani (2004) and can be used in simulations of stages
of Alzheimer’s disease (AD).

On the other hand, we have Lurie’s problem (LP), which
has arisen due to a problem of automatic control of an air-
craft. LP was conceived (Lurie and Postnikov, 1944), which
is also known in the literature as absolute stability prob-
lem, and is part of the area of control engineering. This
problem was studied for many researchers, as Krasovskii
(1953), Popov (1961), and Kalman (1963). Research on
the LP also went on to other areas, such as chaos synchro-
nization (Liao and Yu, 2008); convex approach (Gapski
and Geromel, 1994); neural networks (Pinheiro and Colón,
2019); linear parameter varying (LPV) system (Yu and
Liao, 2019); and µ analysis (Abtahi and Yazdi, 2019). In
works like Liao and Yu (2008) and Pinheiro and Colón
(2019) is shown that HNN is a particular case of Lurie
type system.

In our bibliographic research, we found papers that relate
in some way HNN to AD (Morrison et al., 2017; Sergio
et al., 2009; Swietlik et al., 2019; Thuraisingham, 2015;
Tabekoueng et al., 2020) and papers that connect LP with
HNN (Aouiti et al., 2019; Kaskurewicz and Bhaya, 1995;
Liao and Yu, 2008; Pinheiro and Colón, 2019). But, we
did not find works that relate the LP, HNN and AD. In
this sense, we believe that the originality of this work is to
relate those three areas of research. Thus, using HNN we
present a modeling of one of the consequences of AD, which
is memory loss, as suggested in (Pinheiro and Colón, 2019,
2020). Although the use of HNN in AD modeling is not new
(Sergio et al., 2009; Thuraisingham, 2015), here it is done
in a different way. We do this in continuous-time based on
external inputs (like in Zhou et al. (2016)), and in those
it is done in a discrete time domain. Other differences are:

in paper Sergio et al. (2009) the HNN is used to train the
Venn’s networks which models the AD; in Thuraisingham
(2015) the HNN is used in conjunction with a mean field
theory; in Zhou et al. (2016) the model is based on external
inputs, but it does not use HNN. Therefore, the modeling
of neuropathology in this paper can be considered as a
contribution.

Another contribution of this work is in the application of
the recent result presented by Pinheiro and Colón (2020),
which is the design of a controller via DK-iteration to
correct the effect of the memory loss in computationally
modeled disease. In practical terms, there is still a certain
difficulty in accessing the brain neurons. But with all
technological development, as already seen in works such
as Morrison et al. (2017), it is promising that in the near
future, areas of electrical engineering, such as artificial
neural networks and artificial intelligence will bring even
more efficient solutions for the diagnosis, treatment and
cure of AD.

This work is organized as follow: In section 2, one has the
theoretical background. In section 3, a healthy memory
and a impaired memory are modeled. In section 4, we
have the application of Theorem 8 of Pinheiro and Colón
(2020) in the modeled network. Throughout sections 3 and
4, simulations are carried out to validate the model and
demonstrate the effectiveness of the application. Finally,
in section 5, the overall results are summed up in the
conclusion and followed by a prospect for future research.

2. THEORETICAL BACKGROUND

This section sets forth the necessary bases around the AD,
HNN and LP to proceed with the modeling and application
in the following sections.

2.1 Alzheimer’s Disease

AD is a degenerative brain disease that deteriorates cogni-
tive abilities and motor functions. It was first described in
a 51-year-old woman by German psychiatrist and pathol-
ogist Alois Alzheimer (Alzheimer, 1907). Its causes are
uncertain and unreliable, being its method of diagnosis
made through the patient’s medical history, neurologi-
cal, psychiatric, clinical examinations, neuropsychological
tests, and laboratory studies. For a definite diagnosis, it
is necessary to deepen histopathology (Mckhann et al.,
1984), that is, an analysis of all the composition of brain
tissue, which is not possible with the patient in life. Its
symptoms involve memory loss (Terry, 2000), progressive
dementia, agitation, apathy, depression, loss of appetite,
muscle contractions and others. There is no cure for AD,
however there are medications to slow down and relieve
the symptoms (Fillit and Cummings, 2000; Hake, 2002).

The classical neuropathological marks of AD involve char-
acteristics of macroscopic and microscopic dimensions.
These markers are useful for the diagnosis of the dis-
ease. In general, the macroscopic aspects are: 15% to
35% brain weight reduction, cortex atrophy, ventricular
dilation, reduced hippocampus and decreased blood flow
(Freitas, 2006). The microscopic aspects in general are:
Synaptic loss, neuronal death, amyloid plaque findings and
neurofibrillar entanglements (Selkoe, 2001; Freitas, 2006).



Neurons communicate with each other at contact points
called synapses. In a synapse, a neuron sends a message to
a target neuron. Synaptic loss is responsible for cognitive
decline. It does not come only from the loss of neurons, so
much so that it is possible in a specific region to have fewer
synaptic connections than neurons. This fact indicates that
synaptic loss precedes neuronal loss and, consequently,
remaining neurons have low synaptic connections between
their partners. For this reason, synaptic density is consid-
ered one of the main cognitive declines in AD (Scheff et
al., 2007).

2.2 Lurie’s Problem (LP)

Lurie and Postnikov (1944) proposed a problem and
searched the necessary and sufficient conditions to the
global asymptotic stability of the null solution of that
system (that is, the equilibrium point), becoming known in
the literature as LP or problem of absolute stability. The
problem comes to studying a system with multiple-input-
multiple-output (MIMO) as in the Fig. 1, with a nonlinear
part (nonlinearities f) and a linear part (L).

Figure 1. Block diagram of the MIMO Lurie type system.

The diagram in Fig. 1 is expressed by the following system
of differential equations:{

ẋ = Ax−Bf(σ) +Br1,
σ = Cx,

(1)

where x ∈ Rn is the state vector, f = [f1, f2, · · · , fm] ∈
Rm is a vector of unknown but fixed functions and σ ∈ Rm.
Also the matrices B ∈ Rn×m, C ∈ Rm×n are known
and fixed and A ∈ Rn×n is Hurwitz, know and fixed.
In general, the nonlinear functions fj(σj) are continuous
and restricted to the first and third quadrants of the
plane. Here we will deal with nonlinearities of the type
fj ∈ F(0,kj), where:

F(0,kj ] := {fj |fj(0) = 0, 0 < σjfj(σj) ≤ kσ2
j , σj 6= 0},

(2)

It can be assumed, without loss of generality, that the
set of line vectors ci = (ci1, ..., cin), i = 1, 2, ...,m of
matrix C, are linearly independent, and with the purpose
of separating the variables, by a transformation (Liao
and Yu, 2008) the system (1) can be transformed in the
following:

ẏ = Ãy +

n∑
j=n−m+1

b̃j f̃j(yj), (3)

or:

ẏi =

n∑
j=1

ãijyj +

n∑
j=n−m+1

b̃ij f̃j(yj). (4)

2.3 HNN and its Relationship with LP

HNN was proposed by Hopfield (1984) and is part of an
area known as neurodynamics. It can be represented by
the following system of nonlinear differential equations:

Ci
dui
dt

= − ui
Ri

+

n∑
j=1

TijVj + Ii, i = 1, 2, ..., n, (5)

where C ∈ Rn, u ∈ Rn, R ∈ Rn, T ∈ Rnxn, I ∈
Rn, and Vj = g(ui). The functions g can be defined
as g : R → [0, 1] and is continuously differentiable and
monotonically increasing, or g′i(ui) > 0. This functions
are called activation functions and usually are sigmoidal
functions. The continuous model of HNN can be thought
as an electric circuit (for more details Pinheiro (2015)).

The problem of stability of HNN was initially discussed by
Hopfield (1984). He first defined a function which he called
as computational power function:

E(V ) = −
1

2

n∑
i=1

n∑
j=1

TijViVj −
n∑

i=1

ViIi +

n∑
i=1

1

Ri

∫ Vi

0

g−1
i (s)ds.

(6)

Then, he showed that dE
dt < 0 if the weight matrix

T is symmetric and if no neuron feeds itself back, thus
concluding the stability of the network (see Fig. 2).

Figure 2. Hopfield’s stability.

In Liao and Yu (2008) and Pinheiro and Colón (2019) is
shown that HNN can be considered a special case of MIMO
Lurie type system. Thus, considering the equation (5) after
some changes of variables, it can take the following form:

dxi
dt

= −dixi +

n∑
j=1

bijfj(xj). (7)

In relation to the function f , we have f ∈ F(0,k]. Compar-
ing the equations in (7) with the equations in (4):

ẏi =

n∑
j=1

ãijyj +

n∑
j=n−m+1

b̃ij f̃j(yj),

one has that the HNN is a special case of a MIMO Lurie
type, where ãij = 0, i 6= j, ãii = −di < 0, e m = n.

3. MODELING MEMORY LOSS DUE TO
ALZHEIMER’S DISEASE VIA HOPFIELD

NETWORKS

In this work, we model one of the consequences of
Alzheimer’s disease: memory loss. In order to do this, it



is computationally modeled via a HNN the decrease of
synapse strength between the neurons, because this is one
of the causes of memory loss in Alzheimer’s disease, as seen
in the section 2.1.

From (5), in the equation (8) we have established a
neural network conceiving a system of ordinary differential
equations of 12th order, that is, 12 Hopfield’s neurons
with architecture according to Fig. 3, which is represented
visually by a 3x4 digital sign. A equação 8 gera as figuras
7, 9 e 11.

u̇i = −diui + Ti,n−(i−1) tanh(un−(i−1)) + Ii. (8)

Figure 3. Network architecture to simulate a 3x4 digital
sign.

In Zhou et al. (2016) is suggested how to treat the
components I and u of the equation (8). The entries
I (bias) is the pattern to be memorized, given by the
vector I = [I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12]. For
example, for the network to memorize the letter L, the
following vector must be provided (note that 1 represents
black and −1 represents white):

I = [1,−1,−1, 1,−1,−1, 1,−1,−1, 1, 1, 1] =

 1 −1 −1
1 −1 −1
1 −1 −1
1 1 1

 . (9)

The initial conditions of the u states are patterns to be
recovered, given by the vector u0 = [u0

1, u
0
2, u

0
3, u

0
4, u

0
5, u

0
6,

u0
7, u

0
8, u

0
9, u

0
10, u

0
11, u

0
12]. The vector d is composed of fixed

positive constants, because it is a condition to be Hopfield
network. We chose d = 1 for simplicity. In order to have a
stable network the T matrix must be symmetrical. We use
a matrix of T12×12 symmetrical with main diagonal zero.
We can not say how a real biological neural network is
connected. We chose T0 like in equation (10) for simplicity.
We will see that values around 0.005T0 represents healthy
neurons, and values around 0.6T0 represents irreversible
memory loss. The stability condition of the network and
the correct adjustment of the weights ensure healthy
memory. The network being stable, i.e., the matrix of
weights being symmetric and without feedback of a neuron
itself, ensures that, given an initial condition, the network
finds an equilibrium point. This is a characteristic of the
HNN, it is a locator of equilibrium points, as can be seen
in the Fig. 2.

Given an initial condition, for the network to find the
correct equilibrium point (the memorized pattern given
by the vector I), it is necessary to adjust the weights.
In the section 2.1, it is seen that cognitive impairment in
patients with Alzheimer’s disease is associated with loss of
synapses. We have related these synaptic losses (see Fig. 4)
to the disturbances in the weights of the Hopfield’s network
(see Fig. 5). In this case, the values Tij can be considered
the synaptic connection strength.

Figure 4. Synapse between neurons. S is strength of the
connection.

Figure 5. Hopfield’s network via Simulink R©.

Therefore, in our model, the lower the value of Tij the
greater the connection strength (S) between the neurons.
In this situation we have a healthy memory. And the higher
the value of Tij the lower is the connection strength (S)
between the neurons, which starts to remit in synaptic
losses, leading to memory loss, characterizing Alzheimer’s
disease. The box in Fig. 6 summarizes the process of
modeling memory loss.

Figure 6. Memory loss modeling process.

3.1 Simulation

The purpose of the simulation is to show the functioning
of the Hopfield’s network as a healthy memory and then
as a pathology (Alzheimer’s disease). The selected input
must be the letter L as (9), and we use the initial condition
u0 = [0, 0.5, 0,−1, 0, 0.5, 0, 1, 1,−1, 1, 1].

Healthy Network: In order to have a healthy network, we
insert the matrix of weights T = 0.005T0, where T0 is as in
(10). Note that the weight matrix T is symmetrical and no
neuron feeds itself back, and this guarantees stability for
the network. Now observing the 0.005 value, this constant



makes the weights small which leads the network to take
as equilibrium points the I input as we observed in the
temporal response of Fig. 7.

T0 =



0 0 0 0 0 0 0 0 0 0 0 1.5
0 0 0 0 0 0 0 0 0 0 1.5 0
0 0 0 0 0 0 0 0 0 1.5 0 0
0 0 0 0 0 0 0 0 1.5 0 0 0
0 0 0 0 0 0 0 1.5 0 0 0 0
0 0 0 0 0 0 1.5 0 0 0 0 0
0 0 0 0 0 1.5 0 0 0 0 0 0
0 0 0 0 1.5 0 0 0 0 0 0 0
0 0 0 1.5 0 0 0 0 0 0 0 0
0 0 1.5 0 0 0 0 0 0 0 0 0
0 1.5 0 0 0 0 0 0 0 0 0 0

1.5 0 0 0 0 0 0 0 0 0 0 0


. (10)
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Figure 7. Healthy network temporal response.

Therefore, we have a healthy memory, that is, given any
starting point for a memory (initial condition u0) the
network is able to remember the letter L. The Fig. 8 shows
via a digital sign the evolution of the network in the process
of remembering the letter L.

Figure 8. Temporal evolution of the memory of the letter
L via digital sign.

Network with Alzheimer’s Disease: First, we simulate
the weakening of the synaptic connection between the
neurons. We increase the value of the weight by 100 times,
i.e., instead of multiplying the T0 matrix, in (10) by 0.005,
we multiply by 0.5, i.e., T = 0.5T0. In the network,
an equilibrium points change, according to the temporal
response of Fig. 9, models memory loss in Alzheimer’s
disease. Note that the network remains stable, but now
with other equilibrium points. In the representation by the
digital sign in Fig. 10, we see that the network loses the
ability to remember the letter L correctly.

Finally, we take T = 200T0. Note in Fig. 11 that the
network assumes new equilibrium points, and by the
digital sign of Fig. 12, it completely looses its memory,
not being able to remember the letter L.
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Figure 9. Temporal response for network with partial
memory loss.

Figure 10. Temporal evolution of the letter L for network
with partial loss of memory via digital sign.
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Figure 11. Temporal response of the worst case of memory
loss.

Figure 12. Complete loss of memory via digital sign.

4. APPLICATION OF A RESULT OF LURIE’S
PROBLEM IN HOPFIELD’S NETWORK

In this section, we make an application of the theorem 8 of
Pinheiro and Colón (2020). This theorem together with µ-
synthesis (via DK-iteration), provide mechanisms for the
design of a controller that ensures robustness of stability
and performance for the network in (8). The goal is to
correct the memory failure in the network, thus simulating
a kind of cure in the computationally modeled disease.
The notation µ means the singular structured value of a
function and was developed by Doyle (1982). The DK-
iteration, proposed by Doyle (1985), is a synthesis method
of robust controllers that combines H∞ design with µ-
analysis.



Theorem 1. Given a controller K(s) and [0, kj ] the sectors
that include fj ∈ F(0,kj ] for j = 1, ...,m, then the system
(1) with the controller K(s) in feedback loop is robustly
stable and have robustness of performance, if and only if:

µ∆̃[FU (P,K)] < 1, ∀ω, (11)

where:

P (s) =

[
−C(sI − A0)

−1
B −I −C(sI − A0)

−1
E

C(sI − A0)
−1

B I C(sI − A0)
−1

E

C(sI − A0)
−1

B 0 C(sI − A0)
−1

E

]
, (12)

FU (P,K) = M(s) =

[
M11(s) M12(s)
M21(s) M22(s)

]
, (13)

M11 = I + C(sI − A0)
−1

BK(s)(−I)[I

+C(sI − A0)
−1

BK(s)]
−1

,

M12 = C(sI − A0)
−1

E + C(sI − A0)
−1

BK(s)(−C)(sI

−A0)
−1

E[I + C(sI − A0)
−1

BK(s)]
−1

,

M21 = C(sI − A0)
−1

E + C(sI − A0)
−1

BK(s)(−I)[I

+C(sI − A0)
−1

BK(s)]
−1

,

M22 = C(sI − A0)
−1

E + C(sI − A0)
−1

BK(s)− C(sI

−A0)
−1

E[I + C(sI − A0)
−1

BK(s)]
−1

,

with:

A0 =


a11 −

m∑
j=1

b1j
kj

2
cj1 ... a1n −

m∑
j=1

b1j
kj

2
cjn

...
. . .

...

an1 −
m∑

j=1

bnj
kj

2
cj1 ... ann −

m∑
j=1

bnj
kj

2
cjn

 ,
and:

E =


−
k1

2
b11 ... −

km

2
b1m

...
. . .

...

−
k1

2
bn1 ... −

km

2
bnm

 .
Proof 1. It can be found in Pinheiro and Colón (2020),
Theorem 8.

Remark 1. The notation FU (P,K) means upper linear
fractional transformations that can be studied in detail for
LP in Pinheiro and Colón (2020). The ∆̃ matrix contains
the parametric uncertainties δ of the robust control theory
(see Skogestad and Postlethwaite (2007)).

The Algorithm 1, extracted from Pinheiro and Colón
(2020), brings the procedures and Matlab R© function sug-
gested to perform the DK-iteration, whose theoretical
bases can be found in Skogestad and Postlethwaite (2007).
Note that the algorithm provides a matrix of controllers
K = diag[K1(s), ...,K12(s)], which must be placed in the
network according to Fig. 13. In comparison with the
network in Fig. 5, a feedback loop (in red) is created.

4.1 Simulation

In this simulation, the problem of memory failure in the
network presented by Fig. 9 and Fig. 10 is corrected by
means of controllers designed according to the Theorem 1
and Algorithm 1. The input and initial condition remain as
in the simulation of the Section 3.1. The nonlinearities for
Lurie type system in the design of the controllers are of the
kind fi ∈ F(0,2], i = 1, ..., 12, where 2 is the parameter for

the variation of the parametric uncertainties. Note that
the Theorem 1 refers to the system (1), so we should
insert the parameters A, B and C obtained from the
Hopfield’s network of the computational model of the
disease according to the equation (8). In this case one must
assume:

A = diag[−1, ...,−1](12×12), B = T,

∆̃ =


δ1

. . . 0
δ12

0 δ13 δ14
δ15 δ16

 , C =

 0 1

. .
.

1 0


(12×12)

.

Remark 2. In the ∆̃ matrix one has the nonlinearities f
of the Lurie type system replaced by the uncertainties
δ1, ..., δ12, and the uncertainties δ13, δ14, δ15 and δ16 are
used to ensure robustness of performance (see Skogestad
and Postlethwaite (2007) for more information).

Figure 13. Hopfield’s network with controllers.

Algorithm 1: DK-iteration

Result: A stabilizing controller K(s) that guarantees robust-
ness of performance.

Find the generalized nominal P (s) as in (12) and the matrix ∆̃;

Start with an initial guess for D, usually set D = I.

While (µmax ≥ 1) or a prespecified maximum iteration number
is not reached

Step K: Synthesize a H∞-controller K(s), that is, solve
minK ||DFU (P,K)D−1||∞ with fixed D(s). Use Matlab R© func-
tion [K, γ, Info] = hinfsyn(DPD−1)

Calculate M(s), as in (13)

Step D: Find D(jω) that minimizes σ̄(DMD−1(jω))
in each frequency, with fixed M . Use Matlab R© function
mussvunwrap(Info)

Adjust the magnitude of each element of D(jω) to a stable
and minimum phase transfer function D(s). Use Matlab R© func-
tion fitfrd

Calculate µmax, where µmax is equal to upper bound of µ.
Use Matlab R© function mussv(frdModel, BlockStructure)

endWhile



Remark 3. After the design of the controllers, the simula-
tion is performed in the Simulink R© (via ode45 Dormand-
Prince method with variable-step) using the nonlinearities
of the network (8), that is, the hyperbolic tangent. The
weight matrix is T = 0.5T0.

In the first iteration, µmax = 1.000 was found. Figure 14
shows the upper bound of µ reaching 1. This value of µ
does not satisfy the condition (11).

Figure 14. Condition (11) not satisfied.

In the second iteration, as shown in Fig. 15, µmax = 0.0067
was obtained. This value satisfies the condition (11) of
Theorem 1. Therefore, we have a matrix of controllers,
K = diag[K1(s), ...,K12(s)], that guarantee robustness of
stability and performance for the network (8).

Figure 15. Value of µ that satisfies the condition (11) of
Theorem 1.

Applying the controllers designed in the network, one has
in Fig. 16 the temporal response following the input. One
can observe that the response is very fast in this case
and the transient is not observable. Finally, according to
Fig. 17, it is observed that the network memory has been
restored.

For networks with serious memory problems, as in Fig. 12,
it was not possible to synthesize a controller to correct the
problem of memory loss.

5. CONCLUSION

In this paper, one of the consequences of Alzheimer’s
disease, memory failure, is modeled through the Hopfield’s
network. In this modeling we could verify that the synaptic
connection strength between neurons in a biological net-
work is inverse in the modeled artificial neuronal network.
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Figure 16. Temporal response of the network with con-
trollers.

Figure 17. Temporal evolution of the letter L in digital
sign for network controlled.

That is, a high weight in the artificial network models low
synaptic interactions between biological neurons, causing
memory loss.

In order to correct the problem of memory loss in the
artificial network, a controller via H∞ control techniques
was designed using a recent theorem from the literature
on Lurie’s problem. Simulations showed the effectiveness
of the model and controller. In the process of healing the
artificial network using the controller, we found that for a
high degree of memory loss, the controller cannot restore
memory. This makes sense when observing a biological
network, because it can mean the complete loss of synapses
or the death of the neuron. Thus, for practical purposes
for Alzheimer’s disease, it is supposed that energy inputs
in neurons not completely impaired may lead to atten-
uation in memory loss. This idea is in agreement with
the discovery in Thuraisingham (2015). In this paper, the
model suggests that the external stimuli in the brain will
slow down this memory loss. Nevertheless, if the neuronal
connections are already poor, then the enhancements will
not be noticeable.

For future research, it is planned to model Alzheimer’s
disease using other types of networks, which include delay,
other nonlinearities, and the application of other tech-
niques such as adaptive control using only state feedback,
which would represent new synapses. In addition, other
control techniques can be explored, such as, the use of
the linear parameter-varying (LPV) framework with the
discrete-time domain and integral quadratic constraints
IQC’s. Finally, we wish to have a neuroscientist on the
team, as we could bring the computational model even
closer to the real one in order to provide better conditions
for diagnosis and treatment for Alzheimer’s disease.
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