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Abstract: In this work, grey and black-box approaches are used in order to model a
electromechanical positioning system (EMPS). An ensemble model is then constructed by
combining these two approaches, by using the predictions of both models in order to generate an
improved estimated output. Four friction models, in their symmetric and asymmetric versions,
namely (i) Coulomb model with finite slope at zero velocity and viscous friction, (ii) Coulomb
model with viscous friction, (iii) Tustin friction model, (iv) Coulomb model with viscous friction
and Stribeck effect were used to describe the dynamic behavior of the EMPS. The results have
shown that the combination of grey and black-box models was able to perform better than
the grey-box model and that the proposed friction models are also able to improve the relative
error. This encourages further research on the application of the concept of ensemble model
construction from machine learning to the nonlinear system identification context towards more
accurate model construction.

Keywords: Mechanical and aerospace estimation; Nonlinear system identification; Grey box
modelling.

1. INTRODUCTION

System identification involves a set of techniques respon-
sible for building mathematical models of dynamic sys-
tems through observed/experimental data (Ljung, 2010).
Factors such as the demand for models in process anal-
ysis and the practical limitations of first principles en-
courage the need for identification. The development of
models bring benefits, since they can be applied for esti-
mation/forecasting, control and monitoring. They may be
used specially for simulations, which are cost and time-
effective as well a safe alternative to experiments, they
can be also used for testing new designs and strategies
(Tangirala, 2015).

The main problem to be considered in system identifica-
tion is to find a model structure that is adequate so that
an suitable model can be built. It should be used prior
knowledge and physical insight about the system for the
task of selecting the model structure (Sjöberg et al., 1995).
According to the amount of prior knowledge, models can
be classified as white, grey and black-box. In the former,
the model is perfectly known and its structure and parame-
ters are entirely determined based on first principles. In the
second, some physical insight is available, parameters must
be determined from observed data though (Bohlin, 1994).
Finally, in the black-box approach, a model is built based
on observed data alone, it means that no physical insight
is available or used. In this case the model describes the
experimental data without any physical interpretation of
its parameters (Sjöberg et al., 1995; Kerschen et al., 2006).

In the case of nonlinear black-box models, artificial neural
networks (ANN) can be used for mapping nonlinearities,
since they are universal approximators. We may cite a
multi-layer perceptron ANN for example (Haykin, 2009).

There are many applications of a black-box approach.
Irigoyen and Miñano (2013) used a nonlinear auto regres-
sive with exogenous inputs (NARX) neural network in
order to enhance cardiovascular rehabilitation therapies.
The focus of the authors was the relationship between
the required exercise (machine resistance) and the pa-
tient’s heartbeat for an optimal training configuration.
The model was efficient to reproduce the evolution of the
heart rate in controlled cardiovascular aerobic training.
Wunsch et al. (2018) applied a NARX ANN model for
forecasting groundwater levels of three different sort of
aquifers. Forecasts of lead times up to half a year were
conducted. The results of their studies have shown that
the NARX ANN models are well suited to perform ground-
water predictions for uninfluenced observation wells in all
aquifer types studied. Samara et al. (2013) introduced
a time-dependent functional NARX methodology for the
development of aircraft virtual sensors, the authors focused
on the angle-of-attack for the main flight regimes. The
main flight regimes (landing, take-off, clean flight) of a
small commercial aircraft were considered for three differ-
ent virtual sensor designs. Through a nonlinear 6 DOF
simulation environment the performance of the developed
virtual sensors was tested, they have shown to meet the
design requirements, since they achieved simulations errors
lower than the required. Tijani et al. (2014) proposed a
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hybrid of conventional backpropagation training algorithm
for the NARX network and multi-objective differential
evolution algorithm for identification of the nonlinear dy-
namics of an unmanned small-scale helicopter from experi-
mental flight data. This approach was able to yield a set of
Pareto-solutions with optimal compromise between model
accuracy and model complexity. In Worden et al. (2007)
different physics-based and black-box approaches, such as
Maxwell-Slip models and neural networks, were used in
order to model the non-linear dependence of pre-sliding
and sliding friction forces on displacement and velocity.
The models have shown a suitable capability of friction
prediction. An ensemble of the best models for prediction
was also built, by this improvements in performance have
been achieved.

An ensemble approach is composed of a set of combined
models that act together to predict a response variable
error (Ribeiro and dos Santos Coelho, 2019). Over the
past two decades this approach has received increasing
attention from the computational intelligence and machine
learning community, since ensemble systems have proven
to be very effective and versatile in many real-world
problem domains and applications (Polikar, 2012). Some
examples of application of the ensemble approach are load
forecasting (Papadopoulos and Karakatsanis, 2015; Qiua
et al., 2017; M.Saviozzi et al., 2017), output power forecast
(Sperati et al., 2016; Raza et al., 2018) and fault detection
(Nogoseke et al., 2017). Wong and Worden (2007) used
a tribometer as an experimental rig for the modeling of
dry friction using a NARX type shunting ANN model.
They also constructed an ensemble model by combining
the shunting neural network model with the physics based
dynamic nonlinear regression Maxwell slip model, which
achieved good accuracy in modelling the overall dynamical
behavior. Zhang (2003) used three real data sets in order to
explore a hybrid methodology that combines both ARIMA
and ANN models, the aim was to take advantage of the
unique strength of each model. The results indicate that
the combined model can be an effective way to improve
forecasting accuracy achieved by either of the models used
separately.

Janot et al. (2017) and Brunot et al. (2018) used different
approaches in order to estimate the dynamic parameters
of a Electromechanical Positioning System (EMPS). In
the former work the authors compared an inverse dy-
namic identification method with least squares and a state-
dependent parameter method of nonlinear model estima-
tion. In the latter, an automated instrumental variable
method is used, the aim is the improvement of the usual
IDIM-Instrumental Variable method with an identification
of the remaining noise. Pinto and Ayala (2019) tested
four symmetric and four asymmetric friction models to
describe the nonlinear dynamics of the EMPS using a
inverse dynamic model (IDM). System identification is
also applied to the task of friction modeling, we may
cite the work of Yoon and Trumper (2014) in which the
Generalized Maxwell-Slip (GMS) friction model is adopted
in order to study aspects of friction both in the sliding and
presliding regimes. The authors developed a frequency-
domain method to identify the model parameters based
on the frictional resonances. Wang et al. (2004) presented
an approach that uses a support vector machine regres-

sion for modeling friction for servo-motion systems as an
alternative to static friction models. In the work of Huang
and Chiu (2009) a LuGre friction model (de Wit et al.,
1995) is used for the modeling of the friction dynamics
of a piezoelectric actuating system. The authors employed
a genetic algorithm approach in order to search for the
optimal parameters of the LuGre friction model.

In this context, the present work applies grey and black-
box identification as well an ensemble approach to the case
study of a EMPS. In addition, four symmetric and four
asymmetric friction models were compared. Since the aim
of the work is to better simulate the system’s response,
the ensemble was built in order to achieve a more accurate
response when compared to the pure grey-box approach.
The results obtained indicate that: (i) the ensemble of
both grey and black-box has the highest accuracy for
prediction the system’s output; (ii) models that smooth
the discontinuity at zero velocity of Coulomb friction
model have better performance. The contributions of the
paper are thus: (i) the analysis of different friction models
for grey-box modeling and (ii) the analysis of ensembles
of hybrid grey and black-box models towards more precise
simulation of a system involving friction, which are of great
interest in positioning systems.

The rest of the paper is organized as follows. Section 2
brings a short description of the EMPS and the input
and output data. In Section 3 a brief description of some
friction models is provided, as well the methodology used
for the formulation of the three approaches. The results are
included in Section 4, while Section 5 gives conclusions.

2. CASE STUDY

The electromechanical positioning system (EMPS) is de-
scribed in details by Janot et al. (2019) and all datasets
used in this paper can be found on the Electro-Mechanical
Positioning System’s website as a kind contribution of the
author. Basically, the EMPS is a standard configuration
of a drive system for prismatic joint robots or machining
tools. It consists of a DC motor equipped with an incre-
mental encoder and low-friction high-precision positioning
unit. Figure 1 illustrates the diagram of the EMPS, the
proportional, derivative and drive gains are Kp, Kv and gτ
respectively. The motor position and the reference of motor
position are qm and qg respectively and wq is the noise
caused by the encoder. Fm is a perturbation encompassing
the friction force and offset effects.

Figure 1. EMPS Diagram. Adapted from Janot et al.
(2019).

Figure 2 shows the datasets corresponding to estimation
and validation data of the EMPS. The force responsible
for the movement of the load is computed by the product
of the motor voltage (output of the controller) and the
drive gain. The load’s velocity and acceleration have to
be calculated from the motor position (qm) measured by
the encoder. First, qm is filtered so that the derivatives



can be calculated with finite differences. Measurements
are performed during approximately 25 seconds using a
sampling frequency of 1kHz.

Figure 2. Input and output signals considered for modeling
the EMPS.

3. METHODOLOGY

Figure 3 provides a general overview of the methodology
employed for the formulation of the system’s output.
Firstly, a grey-box model (GBM) is used in order to
perform the simulation of the system’s response (ŷ1). Next,
The error e1 between the true system’s output y and
ŷ1 is modeled by a black-box approach using a NARX
ANN model. By summing the modeled error (ê1) and
the estimated output of the grey-box model the second
estimated output (ŷ2) is generated. Finally, the ensemble
(EGBB) is build by the combination of both grey and
black-box models. It is given a weight to each single model
so that a more accurate response can be estimated. Next
we depict each of these three approaches separately.

Figure 3. Methodological formulations for modeling the
output of the EMPS. Approaches ŷ1, ŷ2 and ŷ3 are
used in order to simulate the load’s position of the
EMPS.

3.1 Grey-box model (GBM)

Section 1 has already addressed some differences between
white, black and grey-box approaches. In the latter, model

sets have adjustable parameters with physical interpreta-
tion (Ljung, 1999), it gives more freedom to change the
model allowing prior knowledge about the object of the
modeling to be inserted (Bohlin, 2006).

An inverse dynamic model (IDM), which expresses the
joint torque/force in terms of the joint position, velocity
and acceleration (Khalil and Dombre, 2004) is used to
describe the EMPS. The inverse dynamic model of the
EMPS is given by (1):

τidm = M q̈ + Ff (q̇) + offset (1)

where τidm is the joint torque/force; M is the mass;
Ff is the friction model; q̇ and q̈ are the load velocity
and acceleration respectively; and offset is an offset of
measurements.

We are interested in comparing different options for Ff .
Some friction force models are presented and compared
in the literature, we may cite the work of Marques et al.
(2016). For the formulation of Ff (q̇) given in (1), some
friction models were selected, namely: (i) Coulomb model
with viscous friction, (ii) Coulomb model with finite slope
at zero velocity and viscous friction, (iii) Tustin friction
model, (iv) Coulomb model with viscous friction and
Stribeck effect. Asymmetric and a symmetric version of
each model were considered in the present work, they are
respectively indicated as F af and F sf . In the former different
friction coefficients for positive and negative velocities are
considered, but this consideration isn’t applied to the
latter.

The first friction model was presented by Coulomb
(Coulomb, 1785), it states that the friction always opposes
relative motion between contacting bodies and its magni-
tude is proportional to the normal contact force. Coulomb
model can be described by (2) and Figure 4 represents the
friction force as a function of the relative velocity.

F =

{
FCsign(v) if ‖v‖ 6= 0
min(‖Fe‖ ,FC)sign(Fe) if ‖v‖ = 0

(2)

FC denotes the magnitude of Coulomb friction, which is
given by:

FC = µ ‖FN‖ (3)

where FN is the normal force of contact, µ is the coefficient
of friction, Fe represents the resultant of the external
forces acting on the reference body in the tangential
direction of the contact, v is the relative tangential velocity
of the body with respect to the other contacting surface.

Coulomb model with viscous friction Its symmetric and
asymmetric versions are (4) and (5) respectively:

Fs
C = FV q̇ + FCsign(q̇) (4)

Fa
C = F+

V 0+(q̇) + F+
C sign(0+ (q̇)) + F−

V 0−(q̇)+

F−
C sign(0− (q̇)) (5)



Figure 4. Representation of Coulomb friction for 1D case.
Adapted from Marques et al. (2016)

where FV represents the viscous friction coefficient; F+
C ,

F−
C , F+

V , F−
V represent, respectively, the magnitude of

Coulomb friction and the viscous friction coefficient of the
asymmetric model.

0+ (q̇) and 0− (q̇) denote mathematical operators, as given
by (6) and (7). 0+ (q̇) returns q̇ if q̇ > 0 and 0 otherwise;
0− (q̇) returns -q̇ if q̇ < 0 and 0 otherwise.

0+ (q̇) = q̇ (1 + sign (q̇)) /2 (6)

0− (q̇) = q̇ (1− sign (q̇)) /2 (7)

Coulomb model with finite slope at zero velocity and viscous
friction The following model presented by Threlfall
(1978) replaces the discontinuity at zero velocity of the
Coulomb model by a finite slope model in order to smooth
out its discontinuity.

Fs
F =

{
FV q̇ + FCKZsign(q̇) if ‖q̇‖ ≤v0
FV q̇ + FCsign(q̇) if ‖q̇‖ >v0

(8)

KZ is defined by (9):

KZ = 1− e−
3‖q̇‖
v0 /(1− e−3) (9)

where v0 is a tolerance velocity.

Tustin friction model According to Tao (2001) Tustin
model is one of the best models describing friction force
at a velocity close to zero. This model was proposed by
Tustin (1947) and can be described by (10):

Fs
T = FV q̇ + FCsign(q̇) + (FS − FC)e−

|q̇|
vs (10)

FS is the static friction coefficient and vS is the Stribeck
velocity.

Coulomb model with viscous friction and Stribeck effect
This friction model was introduced by Bo and Pavelescu
(1982) and takes into account the Coulomb, viscous, stic-
tion and Stribeck friction effects. This model is given by
(11).

Fs
V = FV q̇+

(
FC + (FS − FC)e

−
(

‖q̇‖
vs

)δσ)
sign(q̇) (11)

where δσ is a factor that relies on the geometry of the
contacting surfaces.

Similar to Fs
C, models Fs

F, Fs
T and Fs

V will also be evalu-
ated in their asymmetric versions. They will be named as
Fa

F, Fa
T and Fa

V.

The decision variables of the EMPS were estimated by
a Least Squares (LS) algorithm, these parameters are
given in Table 1. Since (4) and (5) are linear in relation
to the parameters of the model, a QR factorization was
used to solve the linear least squares problem, while the
Levenberg-Marquardt Method was employed for the other
models, which starts at a initial point and finds a minimum
of the sum of squares (12) of the function passed in.

min f(x) =

n∑
i=1

(yi − f(xi, β))2 (12)

where xi is the independent variable and yi is the values of
measurements that expresses the joint torque/force. The
optimization algorithm returns the vector of parameters
(β) that best fits the model.

Table 1. Models and their parameters.

Model Decision variables

F sF M, FV , FC , v0, of

FaF M, F+
V , F+

C , F−
V , F−

C , v0
F sC M, FV , FC , of

FaC M, F+
V , F+

C , F−
V , F−

C
F sT M, FC , FS , FV , vS , of

FaT M, F+
C , F+

S , F+
V , F−

C , F−
S , F−

V , vS
F sV M, FV , FC , FS , vS , δσ , of

FaV M, F+
V , F+

C , F+
S , F−

V , F−
C , F−

S , vS , δσ

3.2 Black and Grey-box model (BGBM)

Since the true output of the EMPS can be described by
ŷ1 and e1, as shown by figure 3, the aim here is to model
e1 using a NARX structure, given by (13), and sum the
modeled error with ŷ1 in order to obtain a more accurate
response than that found by the first approach. The input
(u) and output (y) considered are respectively the EMPS
force and the error e1.

y(k) = F [y(k − 1), y(k − 2), ..., y(k − ny),

u(k − d), u(k − d− 1), ..., u(k − d− nu)]
(13)

where y(k), u(k) are the system output and input, respec-
tively; ny and nu are respectively the maximum lags for
the system output and input; F is some nonlinear function,
and d is a time delay.

The model is essentially an expansion of past inputs and
outputs and it is based on the linear ARX model (Billings,
2013), but the nonlinear ARX model uses nonlinear map-
ping F between the input and output data. In this pa-
per, F is a wavelet network, which is similar to a neural
network for the structure and the learning approach, but
the former requires a smaller number of iterations for the



Table 2. Parameters of the symmetric and asymmetric friction models.

Model/
Parameter

FaC F sC FaF F sF FaT F sT FaV F sV

M (kg) 95.1540 95.1089 95.154 95.109 95.547 95.681 95.153 95.105
FV (N/ms−1) - 203.5034 - 203.5 - 203.36 - 200.85

FC(N) - 20.393 - 20.393 - 17.023 - 20.639
FS(N) - - - - - 17.023 - 18.968
FK(N) - - - - - - - -
Of (N) - -3.1648 - -3.1648 - -4.1234 - -3.1458

F+
V (N/ms−1) 166.7061 - 166.71 - 178.48 - 166.1 -

F−
V (N/ms−1) 240.4236 - 240.42 - 218.67 - 240.19 -

F+
C (N) 20.1440 - 20.144 - 25.014 - 20.204 -

F−
C (N) 20.6277 - 20.628 - 28.028 - 20.651 -

F+
S (N) - - - - 25.014 - 18.708 -

F−
S (N) - - - - 21.578 - 20.058 -
δσ - - - - - - 1.8258 1.2375

v0 (m/s) - - 0.0032239 0.0054125 - - - -
vS (m/s) - - - - 0.004156 0.006464 0.00063898 0.0054831

training phase (Postalcioglu and Becerikli, 2005). A family
of wavelets can be generated by translations and dilations
performed on a single fixed function called mother wavelet.
A wavelet Φj(x) is derived from its φ(zjk) mother wavelet
(Oussar et al., 1998), given by (14) :

Φj(x) =

Ni∏
k=1

φ(zjk) with zjk =
xk −mjk

djk
(14)

where Ni is the number of inputs; mj and dj are the
translation and dilation vectors, respectively.

y = Ψ(x) =

Nw∑
j=1

cjΦj + a0 +

Nj∑
j=1

akxk (15)

The equation given by (15) represents a network with Ni
inputs, a layer of Nw wavelets of dimension Ni, a bias term
and a linear output neuron (y).

3.3 Building grey and black-box ensemble (EGBB)

The strategy adopted here is a linear regression to find
the relationship between the true output of the EMPS
and the two approaches ŷ1 and ŷ2 (predictors) given in
subsections 3.1 and 3.2. A weight is attributed to each
different solution so that the approximation given by ŷ3
can be better than ŷ1 and ŷ2. The input arguments for the
linear regression are the ŷ1 and ŷ2 as predictors and y as
the response variable. A linear, first-order model applied
to p explanatory variables xj and a dependent variable Y
that are observed on n individuals relies on the supposition
that variables are related by the relation given by (16)
(Draper and Smith, 1998).

Y = β0 + β1X + ε (16)

where Y is the random centered vector; X is the fixed
centered and standardized (n × p) matrix of predictor
variables Xj , β1 is the regression vector, β0 is a random
vector consisting of identical elements and ε is a random
vector (error term). One purpose of regression is to give
estimates bj of the regression coefficients βj .

3.4 Evaluation metric

The quality of the results can be assessed by computing
the relative error ε:

ε = 100
‖y− ŷ‖
‖y‖

(17)

where y is the (N × 1) vector of measurements and ŷ is
the (N × 1) vector of estimation.

4. RESULTS

In this section the results concerning the application of a
grey and black-box modeling as well a ensemble approach
for the estimation of the load’s position of the EMPS
are provided. The data provides estimation and validation
data sets. The whole sytem was simulated in the software
MATLAB® according to the diagram of Figure 1, ode45
was used as the solver for the differential equation in order
to simulate the load’s position with the terms estimated
by the grey-box approach. All necessary parameters for
the simulation can be found in Table 2. The software
MATLAB® was used to define the parameters of the
black-box model, which are the orders na, nb and the
number of neurons M of the wavelet network nonlinearity
estimator that is used for the mapping of the models
nonlinearity. The values of na and nb ranged from 2 until
15 and the number of neurons from 10 until 30.

Figure 5 shows the comparison between measured and the
estimated position of the BGBM approach (ŷ2) of Fs

V
and Fs

T models, which are considered as the best models,
since they achieved higher relative error improvement.
It can be seen that the estimated position is almost
perfectly modeled by both models of the BGBM approach,
showing their reasonable resemblance. The comparison
was made taking in account the relative error of the friction
model proposed in the benchmark (symmetric Coulomb
model with viscous friction), and the models proposed
here, see Table 6. In the benchmark, the relative errors
are 0.013752% and 0.0080248% for the estimation and
validation sets respectively.

Tables 3 - 5 show the parameters of all the models and
their evaluation metrics. Considering the GBM approach
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Figure 5. Comparison between the measured and esti-
mated output given by models ŷ2F

s
V and ŷ2F

s
T .

(ŷ1), from the six proposed models, only ŷ1F
s
T is able to

bring some error improvement considering estimation and
validation sets. Table 4 shows clearly that the BGBM ap-
proach is the most suitable for better modeling the load’s
position of the EMPS. According to the metrics, ŷ2F

s
V

and ŷ2F
s
C have, respectively, the lowest relative errors

for estimation (εEst) with 0.0071464% and 0.0072538%.
ŷ2F

s
T and ŷ2F

a
C with 0.0063456% and 0.0069405%, have

respectively, the lowest relative errors for the validation
set (εV al). For the estimation set, all models of ŷ2 perform
better than the model proposed by the benchmark. We can
see the same behavior at the validation set, except by ŷ2F

a
F

and ŷ2F
s
F models. Table 5 shows the results of the EGBB

approach (ŷ3). In this case, 50% of the models were able
to perform better than the original friction model in the
validation set. The best models for this approach are ŷ3F

s
T

and ŷ2F
s
C .

Table 6 shows the percentage of improvement achieved by
each approach and for every model. All relative errors of
every model are compared with the relative error achieved
by ŷ1F

s
C , which uses the friction model proposed in the

benchmark. The model with the highest relative error
improvement for the estimation set was ŷ2F

s
V (48.03%),

followed by ŷ2F
s
C (47.25%) and ŷ2F

s
T (46.68%). For the

validation set, ŷ2F
s
T had the highest error improvement

percentage (20.92%), followed by ŷ3F
s
T and ŷ2F

a
C models

with, 18.59% and 13.51% respectively.

The friction models proposed by the GBM approach has
the lowest performance among all approaches. It is due
to the number of parameters being estimated and also
to the initial conditions, which have high influence on
the performance of this approach. The difference between
the relative errors of both asymmetric and symmetric
models are not significant, but one should consider the fact
that the asymmetric models have more parameters being
estimated compared to the symmetric models. It leads us
to do not consider one approach being better than the
other one. BGBM approach has shown to be efficient on
the error modeling, since only two of sixteen models were
not able to perform better than the model proposed in
the benchmark. Therefore, the EGBB approach has also
proven to be effective, which achieved better performance
on 50% of the models, among then ŷ3F

s
T achieved almost

20% of relative error improvement. Finally, the models

Table 3. Parameters and metrics of the GBM
approach. ŷ1F

s
T and ŷ1F

s
V show relative error

improvement for the estimation set compared
to ŷ1F

s
C , which is the friction model proposed

by the benchmark. Except by ŷ1F
a
F , ŷ1F

s
F

and ŷ1F
s
V all other models show relative error

improvement.

Model Parameters εEst(%) εV al(%)

ŷ1FaC M=95.15540; F+
V =166.7061; 0.0137580 0.0079672

F−
V =240.4236; F+

C =20.1440;

F−
C =20.6277

ŷ1F sC M=95.1089; FV =203.5034; 0.0137522 0.0080248
FC=20.3935; Of=-3.1648

ŷ1FaF M=95.154; F+
V =166.71; 0.0139793 0.0120720

F−
V =240.42; F+

C =20.144;

F−
C =20.628; vo=0.0032239

ŷ1F sF M=95.109; FV =203.5; 0.0139503 0.0121076
FC=20.393; Of=-3.1648

vo=0.0054125

ŷ1FaT M=95.547; F+
V =178.48; 0.0149361 0.0079732

F−
V =218.67; F+

C =25.014;

F−
C =28.028; F+

S =25.014;

F−
S =21.578; vS=0.004156;

ŷ1F sT M=95.681; FV =203.36; 0.0125696 0.0079662
FS=17.023; FC=17.023;
vS=0.006464;Of=-4.1234

ŷ1FaV M=95.153; F+
V =166.1; 0.0137678 0.0079584

F−
V =240.19; F+

C =20.204;

F−
C =20.651; F+

S =18.708;

F−
S =20.058; vS=0.00063898

δσ=1.8258

ŷ1F sV M=95.105; FV =200.85; 0.0137384 0.0080252
FC=20.639; FS=18.968;
Of=-3.1458; δσ=1.2375

vS=0.0054831

Table 4. Parameters and metrics of the BGBM
approach. It shows that ŷ2F

s
V and ŷ2F

s
T have

the lowest relative errors for the estimation and
validation sets respectively.

Model na nb M εEst(%) εV al(%)

ŷ2 FaC 5 13 10 0.0073630 0.0069405

ŷ2 F sC 4 13 12 0.0072538 0.0070701

ŷ2 FaF 3 13 14 0.0077180 0.0119043

ŷ2 F sF 3 4 29 0.0081926 0.0108225

ŷ2 FaT 6 3 10 0.0118427 0.0072983

ŷ2 F sT 4 13 12 0.0073332 0.0063456

ŷ2 FaV 4 6 15 0.0091737 0.0077414

ŷ2 F sV 4 13 15 0.0071464 0.0073584

that smooth the discontinuity at zero velocity of Coulomb
friction model have better performance.

5. CONCLUSION AND FUTURE WORKS

In this paper grey and black-box models and their ensem-
bles have been employed in order to estimate the position
of a load of an EMPS. According to the results, a signifi-
cant relative error improvement can be achieved by mod-
eling the estimation error using different friction models
in a hybrid approach. An improvement higher than 20%
was achieved combining the grey and black-box models.
The GBM approach has the lowest performance among
all approaches, it is due to the influence of the number
of parameters being estimated and the initial conditions.



Table 5. Parameters and metrics of the third
approach. Model ŷ3F

s
T and ŷ2F

s
C have lowest

relative errors compared to the model proposed
by the benchmark.

Model c w1 w2 εV al(%)

ŷ3 FaC 3.986E-06 0.0279 0.9721 0.0072700

ŷ3 F sC 3.248E-07 0.0716 0.9284 0.0071669

ŷ3 FaF 5.223E-06 0.1173 0.8826 0.0121304

ŷ3 F sF 7.612E-06 -0.4233 1.4232 0.0118544

ŷ3 FaT 1.866E-05 -0.0438 1.0438 0.0118841

ŷ3 F sT 8.767E-08 0.1184 0.8816 0.0065332

ŷ3 FaV 3.695E-06 -0.9112 1.9112 0.0085389

ŷ3 F sV 8.294E-07 0.0683 0.9317 0.0073771

Table 6. General comparison between all ap-
proaches. It shows that ŷ2F

s
C and ŷ2F

s
T have

the best performance for estimation and vali-
dation sets respectively.

Model ∆Est(%) ∆V al(%) Model ∆Est(%) ∆V al(%)

ŷ1 FaC -0.04 0.72 ŷ2FaT 13.89 9.05

ŷ2 FaC 46.46 13.51 ŷ3FaT - -22.76

ŷ3 FaC - 9.41 ŷ1F sT 8.60 0.73

ŷ2 F sC 47.25 11.90 ŷ2F sT 46.68 20.92

ŷ3 F sC - 10.69 ŷ3F sT - 18.59

ŷ1 FaF -1.65 -50.43 ŷ1FaV -0.11 0.83

ŷ2 FaF 43.88 -48.34 ŷ2FaV 33.29 3.53

ŷ3 FaF - -51.16 ŷ3FaV - -6.4

ŷ1 F sF -1.44 -50.88 ŷ1F sV 0.10 0.00

ŷ2 F sF 40.43 -34.86 ŷ2F sV 48.03 8.30

ŷ3 F sF - -47.72 ŷ3F sV - 8.07

ŷ1 FaT -8.61 0.64

Because of this and since there is no significant difference
between the relative errors of the friction models of the
GBM approach, it is not possible to conclude whether
asymmetric or symmetric friction models are better to
predict the position of the load.

The authors are also interested in using global search al-
gorithms in order to estimated the dynamic parameters of
the EMPS and simulate its velocity, acceleration and force,
since this approach does not requires initial conditions to
start the optimization process.
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