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(UFC), Fortaleza-CE, Brazil (e-mail: dmadeira@dee.ufc.br)

∗∗Department of Electrical Engineering, Federal University of Ceará
(UFC), Fortaleza-CE, Brazil (e-mail: valessa@alu.ufc.br).

Abstract: In this work we deal with the asymptotic stabilization problem of polynomial (and
rational) input-affine systems subject to parametric uncertainties. The problem of linear static
output feedback (SOF) control synthesis is handled, having as a prerequisite a differential
algebraic representation (DAR) of the plant. Using the property of strict QSR-dissipativity, the
Finsler’s Lemma and the notion of linear annihilators we introduce a new dissipativity-based
strategy for robust stabilization which determines a static feedback gain by solving a simple
linear semidefinite program on a polytope. At the same time, an estimate of the closed-loop
domain of attraction is given in terms of an ellipsoidal set. The novelty of the proposed approach
consists in this combination of dissipativity theory and powerful semidefinite programming
(SDP) tools allowing for a simple solution of the challenging problem of static output feedback
design for nonlinear systems. A numerical example allows the reader to verify the applicability
of the proposed technique.

Resumo: O presente artigo trata do problema de estabilização assintótica de sistemas
polinomiais (e racionais) que são afins no controle e sujeitos a incertezas paramétricas. O
problema de controle via realimentação linear e estática de sáıda é abordado, tendo como
premissa uma representação algébrico-diferencial da planta. Utilizando a propriedade da
QSR-dissipatividade, o Lema de Finsler e a noção de aniquilador linear, apresentamos uma
nova estratégia de estabilização robusta baseada em dissipatividade e que determina um
ganho estático de realimentação por meio da resolução de um problema de programação
semidefinida simples em um politopo. Ao mesmo tempo, uma estimativa do domı́nio de atração
em malha fechada é dada em termos de um elipsóide. A contribuição da estratégia proposta
consiste na combinação entre teoria da dissipatividade e poderosas ferramentas de programação
semidefinida, resultando em uma solução relativamente simples para um problema de controle
desafiador que é o problema da realimentação estática de sáıda de sistemas não lineares.

Keywords: Static Output Feedback, Robust Control, QSR-Dissipativity, Differential Algebraic
Representation.
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1. INTRODUCTION

Designing a static output feedback (SOF) controller is
widely regarded as a challenging stabilization problem.
From a theoretical point of view, even in the case of
the linear and time-invariant (LTI) systems the question
of whether there exists a simple and testable (necessary
and sufficient) condition for stabilizability remains unan-
swered. In spite of the number of controller design tech-
niques proposed over the last decades a definite solution to
this problem is yet to appear. See Veselý (2001), Crusius
and Trofino (1999), Apkarian and Noll (2006), Gahinet and
Apkarian (2011), and Sadabadi and Peaucelle (2016) for a
comprehensive overview of the subject. Furthermore, when

dealing with the more complex case of the nonlinear plants,
linear SOF design becomes even more difficult, as one can
not as readily apply semidefinite programming (SDP) tools
in this scenario, as opposed to the numerous sufficient con-
ditions based on linear matrix inequalities (LMIs) available
in the LTI context (Sadabadi and Peaucelle (2016)).

For many reasons, SOF design remains a relevant research
topic from both a theoretical and a practical point of
view. Firstly, it is not always possible to measure every
single state component in order to implement a full state
feedback control law. In practice, and quite frequently,
one is given access to only partial state information.
Moreover, a static gain is a very simple controller which is
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also capable of dealing with robust stabilization issues in
practical implementations.

In the present work, we solve the linear SOF robust control
problem by means of a new dissipativity-based strategy.
The concept of dissipativity was introduced a few decades
ago and has ever since proved profoundly fruitful for
stability analysis and controller design (Willems (1972),
Brogliato et al (2020)). It applies for general input-affine
systems, let them be square or not, open-loop stable or
unstable (Khalil (2002)). Under certain conditions, dissi-
pative systems are Lyapunov stable, asymptotically and
even exponentially stable, or they can be proved to be sta-
bilizable by some suitable feedback control law (Brogliato
et al (2020)). Dissipativity is a generalization of the notion
of passivity and both properties have been applied for
the sake of feedback stabilization of numerous classes of
systems (Hill and Moylan (1976), Astolfi et al (2002), Feng
et al (2013)). Passivity- and dissipativity-based control
comprise quite a broad and mature research field, where
many interesting applications have been reported (Ortega
and Garćıa-Canseco (2004), Shishkin and Hill (1995)).

In Madeira (2018), a special case of dissipativity called
(strict) QSR-dissipativity was shown to be necessary and
sufficient for the linear SOF stabilizability of LTI systems,
under certain circumstances. A linear SDP strategy for
controller design was proposed as well and in that same
reference QSR-dissipativity was also applied for SOF sta-
bilization of rational nonlinear systems without uncertain-
ties. In the nonlinear case, though, dissipativity was proved
only sufficient for SOF asymptotic stabilization. By mak-
ing use of the well-known Finsler’s Lemma, the notion of
linear annihilators and by adopting a polytopic approach
the problem of linear SOF asymptotic stabilization of that
class of systems was solved locally. It was shown that under
a few assumptions QSR-dissipativity can ensure closed-
loop asymptotic stability in a domain, whereas a differen-
tial algebraic representation (DAR) of the plant was used
in order to allow for a linear SDP formulation of the con-
trol problem. DAR representations and their application
for open-loop robust stability analysis were extensively
investigated in Trofino and Dezuo (2014). Although the
problem of controller design was not addressed in that
reference, the main foundations of a polytopic approach
of rational systems based on the Finsler’s Lema and linear
annihilators are due to it and to Coutinho et al (2002),
and Coutinho et al (2008). Applications of this technique
followed in Polcz et al (2015), Madeira and Adamy (2016)
and in Madeira (2018), for instance.

In Azizi (2017) and Azizi et al (2018), robust stability
analysis and state feedback control synthesis for rational
nonlinear systems with a DAR and uncertainties were
studied, and the case of the dynamical systems with
saturation in the input was also considered. Nonetheless,
linear SOF control was not addressed, nor the notion of
dissipativity was applied. Although it was suggested in
Azizi (2017) the application of the notion passivity as a
possible future research direction, we believe that it is
actually the concept of dissipativity which provides a more
fruitful approach, as it allows for a simple linear SDP
formulation of the problem of controller design and it also
applies for general nonsquare systems.

In this paper, we extend the dissipativity-based results
of Madeira (2018) for the context of robust stabilization.
At the same time that a controller is designed, a domain
of attraction for the closed-loop system is estimated as
an ellipsoidal set. See Polcz et al (2015), Valmorbida and
Anderson (2014), and Chesi (2004) for further references
on the subject of domain of attraction estimation. Further-
more, our results trivially apply for linear state feedback
control as well, as one only has to consider the system
output as equal to the state variable, i.e. y = x. Thus,
state feedback and SOF can be handled by the same sta-
bilization framework based on the notion of dissipativity.

The content of this paper is organized as follows. In Section
2 we have some preliminary results relevant to this work.
Then in Section 3 our main results are presented, i.e.
a new dissipativity-based strategy for linear SOF robust
stabilization of polynomial and rational systems, and a
simple condition for estimating the closed-loop domain of
attraction. Section 4 contains a numerical example and
Section 5 provides the concluding remarks of this paper.

2. PRELIMINARIES

2.1 Nonlinear Systems and DARs

Consider an input-affine and uncertain nonlinear system
as given in Azizi (2017)

ẋ(t) = f(x(t), δ(t)) + g(x(t), δ(t))u(t), (1)

t ≥ 0, x(0) = x0, where in this paper we restrict the
system’s output to be linear

y(t) = h(x(t)) = Cx(t). (2)

Let X ⊆ Rn be a compact set, with 0 ∈ X , such that
x(t) ∈ X is a state vector of this dynamical system. δ(t) ∈
D ⊂ Rl is an uncertain and bounded parameter vector
which accounts for deviations of the model description
around its nominal part. Functions f : X × D → Rn and
g : X × D → Rn×m are such that (f, g) ∈ C1, f(0, δ) = 0
for all δ ∈ D, and the origin (x(t), u(t)) ≡ (0, 0) is an
equilibrium point of (1). Furthermore, The control signal
u(t) is a measurable function, with u(t) ∈ U ⊆ Rm for all
t ≥ 0, 0 ∈ U (Haddad and Chellaboina (2008)). Finally,
h : X → Rp with C ∈ Rp×n a constant matrix, and
functions (f, g) are polynomial or at most rational on their
arguments.

A dynamical system (1)-(2) can be represented in many
different and equivalent ways. In the case of polynomial or
rational models, a much convenient representation is the
well-known Differential Algebraic Representation (DAR),
which is referred to as providing less conservative results
than Linear Fractional Representations (LFR) and Linear
Parameter Varying (LPV) forms. A DAR is more general
than an LFR and an LPV approach, and it usually leads
two larger estimates of a domain of attraction (Azizi
(2017)). A DAR of an input-affine plant (1)-(2) is given
by

ẋ(t) = A1(x, δ)x(t) +A2(x, δ)π(t) +A3(x, δ)u(t), (3)

0 = Π1(x, δ)x(t) + Π2(x, δ)π(t) + Π3(x, δ)u(t), (4)

y(t) = Cx(t). (5)

Here, π(x, u, δ) ∈ Rnπ is a suitably chosen vector of
nonlinear functions. A1(x, δ) ∈ Rn×n, A2(x, δ) ∈ Rn×nπ ,



A3(x, δ) ∈ Rn×m, Π1(x, δ) ∈ Rnπ×n, Π2(x, δ) ∈ Rnπ×nπ ,
Π3(x, δ) ∈ Rnπ×m are matrices of affine functions with
respect to (x, δ), where Π2(x, δ) is a square full-rank matrix
for all vectors (x, δ) ∈ X ×D.

The DAR of a system is not unique and the a state-space
representation (1)-(2) is well-posed in its DAR form if
Π2(x, δ) is invertible, as from (4) and (3) we have

π(x, u, δ) = Π−1
2 (x, δ)[−Π1(x, δ)x−Π3(x, δ)u], (6)

ẋ(t) = (A1 −A2Π−1
2 Π1)x(t) + (A3 −A2Π−1

2 Π3)u(t). (7)

Furthermore, as we are dealing with input-affine systems,
the following relation can actually replace (4)

0 = Πd(x, δ)xd + Π2(x, δ)π, (8)

with

x>d =
[
x> u>

]
, (9)

Πd = [Π1 Π3] , (10)

where Πd(x, δ) ∈ Rnπ×nd and nd = n+m. From this point
on, we always refer to DARs of type (3)-(8)-(5) subject to
(9), with xd ∈ Rnd .

2.2 Finsler’s Lemma and Linear Annihilators

From Trofino and Dezuo (2014), the following version of
the Finsler’s Lemma is presented.

Lemma 1. Consider W ⊆ Rns a given polytopic set, and
let Qd : W → Rnq×nq and Cd : W → Rnr×nq be given
matrix functions, with Qd symmetric. Then, the following
statements are equivalent

(i) ∀w ∈ W the condition that z>Qd(w)z > 0 is satisfied
∀z ∈ Rnq : Cd(w)z = 0.

(ii) ∀w ∈ W there exists a certain matrix function
L : W → Rnq×nr such that Qd(w) + L(w)Cd(w) +
Cd(w)>L>(w) > 0.

If Qd and Cd are affine functions of w and L is a constant
matrix to be determined, then (ii) becomes a polytopic
LMI condition which is sufficient for (i). Here, in accor-
dance with the notation introduced in the previous section,
we consider

w> =
[
x>d δ>

]
=
[
x> u> δ>

]
, (11)

Xd = X × U , W = Xd ×D, (12)

ns = nd + l = n+m+ l, nr = nπ, (13)

nq = nd + nπ = n+m+ nπ. (14)

Also from Trofino and Dezuo (2014), the following defini-
tion plays a key role in the forthcoming sections.

Definition 1. Given a function l̂ : Rnq → Rnv and a
positive integer nr, a matrix function Nl̂: R

nq → Rnr×nv
is called an annihilator of l̂ if

Nl̂(z) l̂(z) = 0, (15)

∀z ∈ Rnq of interest. If in addition Nl̂ is a linear function,
then it is said to be a linear annihilator.

Suppose for instance that l̂(z) = z = [z1 . . . znq ]> ∈ Rnq .
Then, considering all possible pairs (zi,zj) for i 6= j
without repetition, i.e. ∀(i,j) (j > i), a general closed-form
expression for a linear annihilator is as follows

Nl̂(z) =

 Φ1(z) Y1(z)
...

...
Φ(nq−1)(z) Y(nq−1)(z)

 , (16)

where

Yi(z) =−ziI(nq−i), i ∈ I(nq−1),

Φ1(z) = [z2 . . . znq ]>, (17)

Φi(z) =

 z(i+1)

0(nq−i)×(i−1)
...
znq

 , i ∈ {2, . . . ,nq − 1} ,

Nl̂(z) ∈ Rnr×nq with nr =
∑nq−1
j=1 j.

Linear annihilators are not unique, which means that (16)-
(17) provide only one among multiple solutions to the

problem. Furthermore, notice that l̂(z) = z is a very simple
(linear) vector to which a linear annihilator can be easily
found. From (8)-(9), though, we will have to determine in
this work a suitable Nl̂ for a vector

l̂(w) = l̂(xd, δ) =
[
xd
π

]
, (18)

which contains both linear and nonlinear (polynomial and
rational) functions of x and δ. For further details on this
topic and a systematic procedure for determining linear
annihilators the reader is referred to Trofino and Dezuo
(2014) and Coutinho et al (2008).

2.3 Dissipativity

Firstly, consider a state-space model (1)-(2) with δ = 0
ẋ(t) = f(x(t)) + g(x(t))u(t), (19)

y(t) = h(x(t)) = Cx(t). (20)

The definition of dissipativity applies for systems (19)-(20)
that are completely reachable. It demands the existence of
a locally integrable supply rate r(u(t), y(t)) and a so-called
storage function V (x) for the system, V : X → R, V ∈ C1

(Haddad and Chellaboina (2008)). From Brogliato et al
(2020), we present below a few definitions which will soon
be applied for feedback stabilization of nonlinear systems.

Definition 2. A system is said to be dissipative if there
exists a storage function V (x) ≥ 0 such that the following
dissipation inequality holds

V̇ (x) ≤ r(u, y), (21)

along all possible trajectories of (19)-(20) starting at x(0),
for all x(0), t ≥ 0.

Definition 3. A dynamical system is called QSR-dissipative
if it is dissipative with the following supply rate

r(u,y) = y>Qy + 2y>Su+ u>Ru, (22)

where Q and R are symmetric.

Matrices Q ∈ Rp×p, S ∈ Rp×m and R ∈ Rm×m are real
and appear linearly in (22). A relevant result known in
literature is that if Q ≤ 0 and V (x) > 0, then the origin
(x(t) ≡ 0) of the free system (u(t) ≡ 0) (19) is stable in
the sense of Lyapunov.

Definition 4. A system is said to be strictly QSR-dissipative
if it is QSR-dissipative and there exists T (x) > 0 such that

V̇ + T ≤ y>Qy + 2y>Su+ u>Ru, (23)

where Q and R are symmetric.



If a system is strictly QSR-dissipative with Q ≤ 0 and
V (x) > 0, then the free system is asymptotically stable
(Haddad and Chellaboina (2008)). For a system (19)-(20)
without uncertainties the following dissipativity condition
is equivalent to (23)

t(x, u) = −∇V (x)>[f(x) + g(x)u]− T (x)
+h(x)>Qh(x) + 2h(x)>Su+ u>Ru ≥ 0, (24)

where (24) is clearly a function of the augmented variable
xd defined in (9). In this context, system (19)-(20) is said
to be locally strictly QSR-dissipative (Pota and Moylan
(1993)) if t(x, u) ≥ 0 in some domain (x, u) ∈ X × U
containing the point (x(t), u(t)) ≡ (0, 0). Nevertheless, in
this work we consider uncertain systems (1)-(2) which are
supposed to be robust locally strictly QSR-dissipative, i.e.

t(xd, δ) = −∇V (x)>[f(x, δ) + g(x, δ)u]− T (x)
+h(x)>Qh(x) + 2h(x)>Su+ u>Ru ≥ 0, (25)

for all (xd, δ) ∈ Xd ×D.

In this paper, we consider quadratic Lyapunov functions
V (x) which are independent of the uncertainty δ,

V = x>Px, P > 0, (26)

such that the following ellipsoidal set can be defined (Rohr
et al (2009))

E(P, 1) =
{
x ∈ Rn;x>Px ≤ 1

}
, (27)

which will be useful for estimating a domain of attraction
for closed-loop asymptotic stability. In the forthcoming
sections we also restrict the function T (x) to be quadratic

T = x>Nx, N > 0. (28)

3. STATIC OUTPUT FEEDBACK DESIGN

Our next step consists in connecting Lemma 1 and condi-
tion (25) in order to design an asymptotically stabilizing
controller for nonlinear uncertain plant (3)-(8)-(5). In this
section, X and D are considered to be polytopic sets. From
Rohr et al (2009), a polytope X with nx vertices can be
represented as the intersection of nxe hyperplanes

X =
{
x | a>k x ≤ 1, k = 1, · · · , nxe

}
, (29)

where the constant vectors ak ∈ Rn can be determined by
fulfilling a>k x = 1 at all groups of adjacent vertices of X .
A similar description for the set D is also possible through
nδe hyperplanes.

Then recover that we apply Lemma 1 subject to (11)-(14),
where xd represents the augmented variable defined in (9)
and suppose, in addition, that (8) holds subject to

(1) π : Xd ×D → Rnπ is a vector of nonlinear functions.
As (1) is affine in the input, then π(xd, δ) must be
either affine in u or independent of it, i.e. π(x, δ).

(2) Πd : X ×D → Rnπ×nd and Π2 : X ×D → Rnπ×nπ are
affine matrix functions of (x, δ).

(3) matrix Π2(x, δ) is invertible for all values of (x, δ) ∈
X ×D.

Next, suppose that t(xd, δ) can be decomposed in the
following manner

t(xd, δ) = π>d Qdπd, (30)

πd =
[
xd
π

]
, (31)

where Qd is symmetric, affine on (x, δ), and linear on
all the unknown coefficients of (Q,S,R, P,N) for (x, δ)
fixed. The vector π(xd, δ) is a basis from which we can
represent both (1)-(2) in its DAR form (3)-(8)-(5) and
the dissipativity condition t(xd, δ) as in (30). Notice that
matrix function Qd(x, δ) contains all variables one has to
determine for guaranteeing the robust local dissipativity
of (1)-(2).

The nonlinear basis π is not a function of the real coef-
ficients of (Q,S,R, P,N), and for a systematic procedure
to determine this vector see Trofino and Dezuo (2014). In
t(xd, δ), all nonlinear and rational terms are constrained
to the vector π. The terms of Qd(x, δ) are polynomial
and consist in simple multiplications of the coefficients of
(Q,S,R, V, T ) and the components of (x, δ). In addition,
consider

Cd(x, δ) = [Πd(x, δ) Π2(x, δ)] , (32)

as a linear annihilator of πd. This function provides an
extra degree of freedom when investigating the feasibility
of t(xd, δ) ≥ 0 in a domain.

Remark 1. It is important to stress that Qd is not a
function of u, although condition (30) also depends on the
input. This is the case because t(xd, δ) is quadratic in u,
such that it is only the vector function πd which depends
on the control signal.

In the sequel we establish our main result, a theorem
which connects well-established concepts in the field of
polytopic LMI conditions to the SOF control problem. The
theorem provides a constructive approach for robust local
dissipativity analysis and controller design for polynomial
and rational uncertain systems.

Theorem 1. Let us consider a polynomial or rational un-
certain dynamical system (3)-(8)-(5) with an equilibrium
at (x, u) = (0, 0). Furthermore, let (x, δ) ∈ X × D be a
given polytope around (x, δ) = (0, 0), with X described
by (29). For a set of real matrices (Q,S,R) and positive
functions V and T given by (26) and (28), with real P
and N , assume that a suitable decomposition (30)-(31)
of dissipativity condition (25) is given. In addition, with
a linear annihilator Cd given in (32), suppose that the
following LMI is fulfilled for all (x, δ) at the vertices of
X ×D

Qd + LdCd + C>d L
>
d > 0, (33)

for some constant matrix Ld, and for some set of real
coefficients of (Q,S,R, P,N) subject to

P > 0, N > 0, R > 0. (34)

If ∆ ≥ 0, where

∆ = SR−1S> −Q, (35)

and at the same time[
P ak
a>k 1

]
≥ 0, for all k = 1, · · · , nxe, (36)

then the following linear SOF

u = Ky, K = −R−1S>, (37)

asymptotically stabilizes the system around the origin, and
the ellipsoid E(P, 1) ⊂ X is an estimate of the closed-loop
domain of attraction.



Proof: Firstly, for functions V and T of fixed degrees (for
example, quadratic functions), dissipativity condition (25)
can always be decomposed as in (30)-(31), whereas a linear
annihilator Cd is given in (32). From Lemma 1, t(xd, δ) > 0
for all (xd, δ) ∈ Xd×D, U = Rm, if condition (33) is fulfilled
at all vertices of the polytope X × D for some constant
matrix Ld and for a set of coefficients of (Q,S,R, P,N).
Notice that (33) is independent of u, as t(xd, δ) is quadratic
in the input. Furthermore, since N > 0, the system is
robust locally strictly QSR-dissipative in (xd, δ) ∈ Xd×D.

Under (37) and R > 0, t(xd, δ) > 0 means that

∇V >[f − gR−1S>h] < −T − h>∆h. (38)

If ∆ ≥ 0, then asymptotic stability is guaranteed for all
(x, δ) ∈ X ×D, as

∇V >[f − gR−1S>Cx] = ∇V >[f + gu] < 0. (39)

From (36),
P − aka>k ≥ 0, (40)

for all k = 1, · · · , nxe, and

(x>ak)(a>k x) ≤ x>Px, (41)

such that if x ∈ E(P, 1) then x ∈ X , with V̇ < 0 inside
the whole polytope. Then, for all x(0) ∈ E(P, 1), the state
trajectories converge asymptotically to x = 0 without ever
leaving the ellipsoid E(P, 1). 2

As the polytope X has nx vertices and D is assumed to
have 2l vertices, the polytope X ×D has nx · 2l vertices to
be tested.

Remark 2. Since Πd and Cd do not depend on u, quadratic
decomposition π>d Qdπd results in a polytopic LMI condi-
tion on (x, δ) that holds for all u, i.e. U = Rm.

Next, a linear SDP program can be formulated for design-
ing a stabilizing gain K. From Madeira (2018), ∆ ≤ 0 if

Md =
[
Q S
S> R

]
≥ 0, (42)

as this is equivalent to

∆ = SR−1S> −Q ≤ 0, (43)

with R > 0. On the other hand, the sufficient condition for
stabilization is ∆ ≥ 0 and it can be verified if we define a
new Md as

Md =
[
Q+ αI S
S> R

]
≥ 0, (44)

where α > 0 is a real coefficient. By minimizing the
function tr(Md) we might approach some ∆ ≥ 0, as
tr(Md) = 0⇔Md = 0 (Yang (1995)) and (44) leads to

∆ = SR−1S> −Q ≤ αI. (45)

Then a systematic procedure for controller design and
domain of attraction estimation can be proposed.

SOF Design Algorithm

(1) Consider a nonlinear plant described by (1)-(2) and
quadratic functions V and T such as in (26) and (28).

(2) After substitution of (V, T ) into (25), determine a
decomposition (30)-(31) subject to (8)-(9), and a
linear annihilator Cd according to (32).

(3) Initialize a polytope X × D around the origin and
determine the nxe vectors ak that provide a set of
hyperplanes.

(4) Specify some α > 0 for Md in (44) and solve the
following linear SDP program.

minimize tr(Md), (46)

subject to (33) at all vertices of X ×D, (47)

and (34), (36), (44). (48)

If feasible, then (Q,S,R, P,N,Lp) is a solution to the
SDP program.

(5) Larger domains X ×D can be obtained by returning
to Step 3 and setting larger values for the vertices of
the polytope until Step 4 is no longer feasible.

By applying this algorithm, we guarantee the strict QSR-
dissipativity of the plant in (x, δ) ∈ X×D and, at the same
time, try to ensure asymptotic stabilizability by fulfilling
∆ ≥ 0.

A polytopic LMI condition for estimating X for a fixed
Lyapunov function was presented in Madeira and Adamy
(2016), for instance, where the notion of passivity indices
was employed. In that publication, the authors compared
the SOS approach with polytopic LMI estimates and veri-
fied that the latter, as expected, provide less conservative
results than the former. As mentioned before, robust con-
troller design had not been addressed neither in Madeira
and Adamy (2016) nor in Madeira (2018). The determina-
tion of an ellipsoid E(P, 1) as an estimate of the domain of
attraction was not mentioned in those references neither.

Finally, in Polcz et al (2015) open-loop stability of poly-
nomial and rational nonlinear systems was investigated
using an algorithm that automatically generates a vector
basis such as πd in (30)-(31) and matrix functions which
play a similar role as Qd and Cd in (33). Here, we do
not implement such an automatic procedure, as it has
yet to be adapted to our dissipativity-based framework.
Nevertheless, this is certainly our next step in the process
of making this new stabilization strategy more suitable for
practical applications in the future.

4. NUMERICAL EXAMPLE

The whole controller design procedure can be imple-
mented in MATLABR© with well-known SDP tools (Löf-
berg (2004), Sturm (1999)). We consider the following
version of a nonlinear system which was also analyzed in
Baldi (2016)

ẋ1 = −x1 + (1 + δ1)x1x2 + x2u, (49)

ẋ2 = x1 + 2x2 + (1 + δ2)x2
1 + x2

1x2 + u, (50)

y = x2. (51)

Fig. 1 shows the open-loop trajectories of this system for
some initial conditions about the origin, with δ1 = −0.05
and δ2 = 0.05. Note that the uncontrolled system is
unstable.

By applying Theorem 1, we intend to stabilize this system
around the origin. Firstly, suppose that V = x>Px and
T = x>Nx are quadratic functions such as

V (x) =
[
x1
x2

]> [
v1 v2
v2 v3

] [
x1
x2

]
, (52)

T (x) =
[
x1
x2

]> [
n1 n2
n2 n3

] [
x1
x2

]
, (53)
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Figure 1. Open-loop trajectories of system (49)-(51).

where (v1, v2, v3), (n1, n2, n3) and (Q,S,R) are real param-
eters to be determined. We obtain the following function
whose nonnegativity in a polytopic domain X × D has to
be investigated, whereas xd = [x1 x2 u]T and δ = [δ1 δ2]T ,

t(xd, δ) = t1x
2
1 + t2x1x2 + t3x

2
2 + t4x2u

+ t5x1u+Ru2 + t6x
2
1x2 + t5x1x

2
2 + t5x

3
1

+ t5x
3
1x2 + t7x

2
1x

2
2 + t8x1x2u+ t5x

2
2u

+ t8δ1x
2
1x2 + t5δ1x1x

2
2 + t5δ2x

3
1 + t7δ2x

2
1x2,

(54)

with

t1 = −2v2 − n1 + 2v1, t2 = 2v2 − 2n2 − 2v3 − 4v2,

t3 = −n3 − 4v3 +Q, t4 = 2S − 2v3, t5 = −2v2,

t6 = −2v1 − 2v3, t7 = −2v3, t8 = −2v1.

By setting Πdxd + Π2π = 0, we can determine a vector
basis given by

π =
[
x2

1 x1x2 x2u
]>
, (55)

π>d =
[
x>d π>

]
, (56)

and a combination (Πd,Π2)

Πd =
[
x1 0 0
0 x1 0
0 0 x2

]
, Π2 =

[−1 0 0
0 −1 0
0 0 −1

]
,

where det(Π2) 6= 0, ∀(x, δ) ∈ X × D. Then a matrix Qd
is given by

Qd =


t1

t2
2

t5
2

t5(1+δ2)
2 Φ t8

2
t2
2 t3

t4
2

t6+t7x2
2

t5(1+δ1)
2

t5
2

t5
2

t4
2 R 0 0 0

t5(1+δ2)
2

t6+t7x2
2 0 0 0 0

Φ t5(1+δ1)
2 0 0 0 0

t8
2

t5
2 0 0 0 0

,
with

Φ = t5x1 + t8δ1 + t7δ2
2 .

Linear SDP problem (46)-(48) involving a polytopic LMI
condition is independent of the control signal u and was
proved feasible at the vertices of the region defined by

X ×D = {(x, δ)| |x1| ≤ 1.4, |x2| ≤ 0.4,
|δ1| ≤ 0.05, |δ2| ≤ 0.05}. (57)

For this polytope X , we have the following a′ks in (29),
k = 1, · · · , 4,

a1 =
[

0
2.5

]
, a2 =

[
−0.7143

0

]
,

a3 =
[

0
−2.5

]
, a4 =

[
0.7143

0

]
.

By proceeding with the algorithm we can determine ma-
trices (Q,S,R, P,N,Ld) that guarantee the feasibility of
the problem and a gain that asymptoticaly stabilizes the
closed-loop system in X × D. For α = 0.01 in (44), the
following parameters were obtained

Q = 166.8087, S = 6.0580, R = 0.2200,

P =
[
v1 v2
v2 v3

]
=
[

1.0780 −0.1982
−0.1982 6.2865

]
> 0,

N =
[
n1 n2
n2 n3

]
= 10−4

[
0.0022 −0.0247
−0.0247 0.4958

]
> 0,

and

Ld =


−0.2026 1.8764 −0.3266
−3.3853 −1.8508 −0.2886
−0.1002 0.3287 −0.1064
−0.2738 0.4599 −0.0494
0.1980 −11.0958 −0.4489
0.0009 −0.5174 −0.9112

 .
With these values of (Q,S,R) we obtain

∆ = SR−1ST −Q = 0.0067 > 0,
and the origin is asymptotically stabilizable by a linear
SOF such as

K = −R−1ST = −27.5364⇒ u = −27.5364x2.

Furthermore, the ellipsoid E(P, 1) from (27) is an estimate
of the system’s domain of attraction. In Fig. 2 the ellipsoid
is given by the dashed curve, and for those simulations we
considered δ1 = −0.05 and δ2 = 0.05.

Figure 2. Closed-loop trajectories of system (49)-(51).

5. CONCLUSIONS

This work introduced a new dissipativity-based strategy
for local and robust asymptotic stabilization of nonlinear
systems by linear static output feedback. In the present
paper we have extended the results of Madeira (2018),
as the class of the uncertain nonlinear systems was now
considered and a simple strategy for estimating the closed-
loop domain of attraction was provided. In this article, the
Finsler’s Lemma and the notion of linear annihilators were
applied in order to formulate the problems of robust local



dissipativity analysis and linear SOF design as a single
linear SDP test containing a polytopic LMI condition.
Usually, only the problem of state feedback is treated in
such a noniterative and linear SDP fashion, whereas SOF
control (a nonconvex problem) is frequently solved through
complex iterative algorithms.

We applied the proposed strategy to the stabilization prob-
lem of an open-loop unstable system with uncertainties.
The simulation results proved the usefulness of the tech-
nique. Although the aforementioned system is polynomial,
the controller design procedure applies for rational systems
as well. Linear static state feedback can also be handled
by the same framework, by setting y = x.

Future research directions might involve the stabilization
problem of nonlinear uncertain systems with input sat-
uration, the case of the LPV systems and anti-windup
strategies. A dissipativity-based strategy for dynamic out-
put feedback could also provide an interesting research
topic subsequently. Lastly, it could also be considered as
another research direction the use of rational Lyapunov
functions possibly dependent on the uncertainty and its
impact on estimating a domain of attraction and on the
computational complexity of the controller design strategy.
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