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Abstract: This work presents a model predictive control (MPC) to coordinate connected and
autonomous vehicles (CAVs) with a Vehicle-to-Vehicle (V2V) communication when they enter
intersections. With the purpose of minimizing energy as well as passing the intersection smoothly,
it uses an individual linear quadratic optimal controller for each CAV, with a predefined path,
that will respect mixed-integer linear constraints to guarantee collision avoidance in relation to
the nearby vehicles. This method solves different scenarios with a different number of CAVs
crossing the intersection, coming from more than one road, including a platoon formation. The
results show that MPC is an efficient technique to integrate multiple CAVs to collaborate with
the mutual objective of join merging zones without accidents.
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1. INTRODUCTION

Nowadays, driving has become a costly task in terms of
time and fuel spent amid traffic jams that occur mostly on
the streets of large cities and busy highways. It can cause
the occurrence of human errors in the control of vehicles
related to acts of imprudence, stress or weariness. Thus, an
option capable of mitigating these issues is the adoption of
an Intelligent Transportation System (ITS), together with
Connected and Autonomous Vehicles (CAVs). An ITS pro-
vides a set of strategies with the ability to improve safety
and mobility in urban flow, through integration between
transport management and operation L. Greer et al (2018).
The CAV control is responsible for its guidance, while
environment dynamic constraints and obstacles avoidance
are satisfied Qian (2016). In other words, it requires special
efforts to plan an optimal trajectory for the car movement,
owing to the changing circumstances, such as traffic signs
and other individuals on the street lanes.

Concerning CAVs, one of the critical issues for their high-
performance is the flow control at intersections of urban
routes or highways Mahmassani (2016). This mode of
transport has the potential to contribute to the better
efficiency in traffic and reduction in the number of road
accidents, and as a consequence, there is an urgent need for
a reorganization in the traditional ways of traffic control
and operation, because they cannot afford an Autonomous
Intersection Management (AIM).

Just as important as how to set CAVs control is how to es-
tablish communication between them in a way that averts
failure in the messages exchanging. To that end, it is pos-
sible to choose one or more transmission systems among
V2V (vehicle-to-vehicle), V2I (vehicle-to-infrastructure),
I2I (infrastructure-to-infrastructure) or V2X (vehicle-to-
everything) transmissions. Usually, in AIMs, there are two

types of coordination: the centralized one in which there
is at least one general task decided by a single central
controller, and the decentralized approach in which each
vehicle determines its own control policy Rios-torres and
Malikopoulos (2015).

In this context, in the last two decades, there has been a
substantial integration of technologies advances in wireless
communication, digital processing, and detection in traffic
management systems, with the goal of increasing their
sustainability, safety, and reliability, evidenced in the work
of Mahmassani Mahmassani (2016). In addition, Rios-
Torres and Malikopoulos Rios-torres and Malikopoulos
(2015) and Gonzalez et al Gonzdlez et al. (2016) explore
how different applications of coordination and movement
control in ITS and CAVs result in shorter spaces between
vehicles and faster responses, while at the same time as
improving road capacity by identifying the appropriated
speed limits. Moreover, Katrakazas et al Katrakazas et al.
(2015) and Wang and Hussein Wang and Husseim (2012)
have directed studies to assist researchers in developing
motion planning techniques for autonomous vehicles in
real time.

Taking into account the aforementioned characteristics,
model predictive control (MPC) provides one of the most
promising ways to deal with the dynamic and uncertain na-
ture of trajectory planning and tracking for CAVs Reddy
(2016); Liu et al. (2010). In this approach, the CAV control
observes future predictions, on a fixed horizon, based on
the currently available information. Recent works have
applied MPC in autonomous driving field. Reddy (2016)
and Liu et al. (2010) present a classic hierarchical control
architecture of an individual vehicle that decomposes the
controller into a motion planner and a tracking controller.
Nolte et al. (2017) proposes a safe trajectory planning
even in cases of system failures through MPC for lin-
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ear parameter-varying systems. Qian et al. (2015) and
Makarem and Gillet (2013) suggest decentralized MPC
approaches where vehicles solve local optimization prob-
lems in parallel, ensuring them to cross the intersection
smoothly.

In this paper, a decentralized MPC approach, built upon
the work of Makarem and Gillet (2013), solves the inter-
section control problem involving CAVs, applying collision
avoidance constraints in each vehicle using the predicted
trajectories of the nearby vehicles in a V2V communica-
tion. The proposed strategy addresses the gap concerning
the exclusion of the vehicle after the vehicle left the inter-
section and the extension of the same-lane crash avoidance
constraints to the whole prediction horizon, while consid-
ering a cost function that weights the speed tracking and
the control effort alongside with the platoon formation.

2. INTERSECTION CONTROL PROBLEM

In AIM context, vehicles that enter road junctions or
merging highways have to subject themselves to some
rules to obtain the better crossing sequence. Commonly,
there is a delimited area before the intersection or merging
zone, called control zone, where the vehicles exchange data
and define a priority list to approach the intersection
or merging zone. The intersection and merging control
problems are very similar and can be easily treated with
the same approaches Rios-torres and Malikopoulos (2015).
Fig.1 shows these two different scenarios.
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Figure 1. a) Cross intersection b) Merging roadway.
Source: Rios-torres and Malikopoulos (2015)

The distance between the entry of the two zones is L, and
the region at the center of the intersection has a length
S. The main objective of good coordination is to establish
safe distances between the vehicles placed at the merging
zone to avoid collisions.

It is possible to consider that vehicles close to an in-
tersection follow second-order dynamics to describe their
movements, as shown in (1):

where ¢ = 1, 2, ..., n, n € N indexes each vehicle in its
specific lane (one side of the road with the orientation
pointing to the intersection zone), m; is the mass of the
i-th vehicle, x; is the position of the i-th vehicle, and wu; is
the input of the i-th vehicle. For simplicity, this work will
assume that each CAV knows its path and they can only
accelerate or decelerate without shifting off the existing
pathway nor taking turns. Furthermore, the model does
not account for friction or air drag.

3. MPC STRATEGY

MPC is a control strategy that uses the system model
to obtain an optimal control sequence, minimizing an
objective function Camacho and Bordons (2007). At each
sampling instant, there are predictions of the behavior
of the system in the prediction horizon N. Although
the controller calculates an optimal control sequence that
minimizes a cost function for each step of the horizon, it
will only use the input values for the current sampling
interval.

As a result of this, a discrete-time representation of this
model becomes necessary, so it may consider a sampling
period T', a sampling instant k and the application of Euler
approximation to the (1), to obtain the following discrete-
time state-space model for the movement of the CAV:

z(k+1) = Az(k) + Bu(k), (2)
where A is the state matrix, and B is the matrix related
to the input signal, respectively, given by:
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The state x(k) = [x1:(k) l'gi(k)]T is composed of the
position x1 and speed x5 of each vehicle. The input control
u(k) represents the net force of the vehicles which is
directly related the energy consumption used to move
them.

The main idea is to use individual MPC for each vehicle
with some assumptions:

e The nearby vehicles share information about their
position, speed and intended direction at every time
step;

e The CAVs cannot turn to the left or right. They can
only move forward in a straight line;

e FEach CAV considers that the predictions will not
change for all vehicles, except its own;

e Every vehicle optimizes its speed along its path to
cross the intersection.

In order to ensure smooth trajectories and limited inputs,
this work proposes to minimize the following cost function
J in a standard quadratic form:

N n
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where xo; is the speed of the i-th vehicle along its path
during the j-th time step of the horizon, v,.s is the
desired speed in the optimization horizon N, and wu; is
the control input of the vehicles. The two constants g;
and r; are weights that impact on the importance of the
trajectory smoothness and the actuation energy. The first
term penalizes the deviation of the speed from the desired
speed and the second one penalizes the control effort. By



means of constraints, it will be possible to ensure the
collision avoidance between the vehicles. Furthermore, this
keeps a quadratic MPC problem with mixed-integer linear
constraints.

Before establishing constraints, it is necessary to introduce
a priority assignment to determine which CAVs will join
the intersection first, based in which one has the shorter
predicted time arrival 7, estimated by:

4:(0) (6)
vi(0)’

where d;(0) and v;(0) denote the distance between the
vehicle 7 and the intersection, and the actual speed of the
vehicle 7, respectively. If there is a vehicle [ in a different
road converging to the same intersection, the predicted
arrival time 7; could be calculated in the same way as
in (6). To demonstrate this scenario, Fig.2 depicts the
priority assignment for two vehicles.
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Figure 2. The initial positions are used to determine the
priority of the vehicles for passing the intersection. In
this case, both vehicles have the same speed.

As seen from Fig.2, 7; is shorter than 7y, so, in this case, the
vehicle ¢ will be the first to get in the intersection. Thus,
the constraint for collision avoidance for crossing vehicles
is given by a single mixed-integer linear inequality:

(1-6)1—6) 1 =>m
(]. — (51)(1 — 51) T < T
(7
The distance between the predicted positions for both
CAVs in the time step N must be higher than the
minimum distance difference Ad, which guarantees the
crossing of vehicles without collision. Thus, in accordance
with the priority list, they should decide whether to
accelerate or decelerate to enter the intersection zone. As
there is no chance the CAVs will collide after they pass
through the intersection, the binary variables §; and §; will
assume the value 1, so, the required minimum distance will

be 0 when at least one of the compared vehicles crosses the
road junction.

When considering more than one vehicle in the same lane,
there is the need to add another constraint to ensure that
they will not crash. So, the solution is to limit a minimum
distance between the one step ahead predicted position for
a CAV and the current location for the CAV in front of
it, ensuring a better safety to the system. This situation is
shown in Fig.3.
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Figure 3. Constraints related to collision avoidance for the
vehicles in the same lane.

Constraint (8) represents the collision avoidance for vehi-
cles in the same lane.

xll(k+j)—l'1l+1(k+]) ZAd Vi = 1,2,,n (8)

It is important to take into account dynamic limits, like
acceleration and braking, and road limits, like traffic signs
indicating the maximum speed allowed. So, the linear
inequalities constraints that fulfill these requirements are:

m;Qs min < Uz(k +]) < m; s max Vi = 13 2’ w1 (9)

0< 1‘27i(l€ —|—j) < Vi maz Vi=1,2,...,n (10)

When more than two lanes are involved, a new set of
constraints has to be leveraged, as shown in (11) and (12)
for intersection crossin, and collision avoidance in the same
lane, shown in (13).

1‘11'70(]{1 + N) - 1‘1[,])(]6 + N) > Ad(l - 52)(1 - 51)
{ ()
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Ll’li’o(k + N) - ll?ll,p(k + N) Z Ad(l - (52)(1 — 51)
{ (12)

Yo=2,4;Vi,Vl=1,2,...n;YVp=1,3



ik +7) —xulk+j) > Ad
{ (13)

Vi=1,2,...,n;Vl > i

In (11) and (12), o represents the lanes in the horizontal
highway, and p denotes those in a vertical way. Further-
more, ¢ and [ indicate the vehicles placed in each lane of o
and p, respectively. In (13), ¢ and [ are vehicles in the same
lane, but [ is always higher than ¢ because there will be a
comparison between the distances of different vehicles.

One of the ways to mitigate congestion, reduce energy use
and emissions, and improve safety, is through the packing
of CAVs in platoons Rios-torres and Malikopoulos (2015).
Forming a platoon before entering the intersection and
keeping it while passing intersections can decrease the
computation time for optimization, just focusing on the
leader Makarem and Gillet (2013). Consequently, the cost
function (5) must be modified, in order to add a new term:

J=Jy+ JutJa, (14)
with:
N n
Jv :ZZQi(Uref_x2i(k+j))27 (15)
J=1i=1

which aims to make the i-th CAV follow the speed v;.y.
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which ains to minimize the energy spent to run the CAVs.
And:

(k+j-1), (16)
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which encourages platooning, where s; is the weight coeffi-
cient that penalizes the distance difference for the vehicles
in the same lane. When s; is large enough, this new
cost function makes the vehicles staying together with an
average speed.

(17)

4. SIMULATION AND RESULTS

The scenario used for the simulations is similar to the
cross intersection in Fig.2. The control zone has L = 150
m and S = 8 m. The lanes have a numerical sequence
from 1 to 4, starting on the left side of the intersection
zone and running counterclockwise. The simulations ran in
the software Matlab, using the toolbox for modeling and
optimization Yalmip Léfberg (2004), in association with
the optimization solver Gurobi. Table 1 shows the vehicle
parameters, as well as the simulation parameters.

The first situation tested how the MPC behaves when
four vehicles join the intersection zone, coming from the
perpendicular lanes 1 and 4 and giving more importance
to the desired speed (¢; = 2000 and r; = 1). The result is
shown in Fig.4. The initial positions for the cars on each
lane were x1(0) = [-80 —95].

The vehicles closer to the intersection in each lane (black
lines) accelerate to cross the junction first, with a priority
to the vehicle in lane 1. The remaining vehicles (blue lines)
have to decelerate to keep a minimum distance and wait

Table 1. Simulation and vehicles parameters

[HTML]000000 Parameter ~ [HTML]000000 Value

T 500 ms
N 10
Uref 6 m/s
Umax 15 m/S
Umin 0 m/s
m 600 kg
Amaz 3.47 m/s2
Amin -10 m/s?
Ad 10 m
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Figure 4. Four different vehicles that come from perpen-
dicular lanes and join the intersection.

for their turns. It is noticeable that all of them try to reach
the desired speed (6 m/s).

With the same parameters as before, another simulation
experimented the cross intersection with six vehicles di-
vided into two perpendicular lanes. Fig.5 presents the
outcomes of this new circumstance. The initial positions
for the cars on each lane were x1(0) = [-80 —90 —100].
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Figure 5. Six different vehicles that come from perpendic-
ular lanes and join the intersection.

The results are similar to the previous situation as the
vehicles near the intersection (black lines) attempt to cross
the intersection by increasing their speeds, and those far
from it (blue and red lines) adjust their acceleration to
respect the priority list.

A scenario with twelve vehicles entering the intersection
from four different paths, following the (11), (12) and (13),
presents an operation with similar speed profiles for the
vehicles in the same road, but in opposite lanes, as shown
in Fig.6. The initial positions for the cars on each lane were
x1(0) = [-80 —100 —120].

In lane 1 and 3, the second CAVs (blue lines) accelerate to
getting closer to the vehicles in front of them (black lines),
later, they decelerate to try to match their speed, while
the last ones (red lines) decelerate until the leaders pass
the intersection. In lane 2 and 4, the chosen solution was
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Figure 6. Twelve different vehicles that come from four
different lanes.

to prioritize only the entering of the first vehicles (black
lines), so they accelerate to be the earliest CAVs to join
the intersection zone. Fig.7 depicts the moment before the
first vehicles cross the intersection and illustrate the speed
profiles in Fig.6.
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Figure 7. llustration of the moment before the first vehi-
cles cross the intersection. Lane 1: cars moving from
left to right; Lane 2: cars moving from bottom to top;
Lane 3: cars moving from right to left; Lane 4: cars
moving from top to bottom.

The performance of the platoon formation, defined by
the cost function in (14), took into consideration two
different sets of weights. First, it assumed s; = 900, forcing
the vehicles to stay together, then, s; = 1, giving less
importance to the platoon configuration. Fig.8 draws these
two environments. The initial positions for the cars on each
lane were z1(0) = [-80 —100 —120].

For s; = 1, the vehicles behave as in Fig.7, forming
small separate groups. On the other hand, for s; = 900,
in each lane the vehicles form a solid platoon to pass
the intersection simultaneously. Because of the abrupt
variations in acceleration input, necessary for platoon
formation, the weight r; had to assume a higher value (r;
= 6), in order to give more importance to energy saving.
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Figure 8. Two sets of weights for platoon formation. Lane
1: cars moving from left to right; Lane 2: cars moving
from bottom to top; Lane 3: cars moving from right
to left; Lane 4: cars moving from top to bottom.

Fig.9 demonstrates the speed aspects when the platoon
formation happens.
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Figure 9. Twelve different vehicles forming four platoons.

When the MPC requires a platoon formation, the vehicles
in the last position (red lines) to pass the intersection raise
their speed quickly to get closer to the others. Additionally,
the two CAVs next to the intersection (black and blue
lines) decelerate until there is speed synchrony among all
the vehicles in the lane.

This work also measured the inputs of the MPC system in
relation to the applied acceleration for each CAV, with and
without platoon formation. Fig.10 and 11 describe these
results.
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Figure 10. Input acceleration without platoon formation.

As seen in Fig.10 and 11, both configurations lead the
inputs to be close to zero, but the platoon formation
demands more acceleration in the first moments of the
simulation, so, it will require more energy consumption,
contrary to what Rios-Torres and Malikopoulos Rios-
torres and Malikopoulos (2015) say. However, there is
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Figure 11. Input acceleration with platoon formation.

the need to consider the absence of the air drag in this
study, because it is a factor that impacts a lot in the
energy reduction when the vehicles take advantage of the
wake created by the heads of the platoon. In addition,
it shows the first organization of the CAVs as a large
group, and they can reuse the same formation in other
intersections. As a consequence of this, the variations will
be less frequent.

A comparison with the controller proposed in Makarem
and Gillet (2013) was conducted in order to assess the
performance of the proposed strategy. The tuning of the
controller was proceeded as displayed on Table 2. The
initial positions for the cars on each lane were z1(0) =
[—80 —100 —120].

Table 2. Tunning and simulation parameters
for Makarem and Gillet controller.

Parameter Value
Umax 15 m/s
Amax 10 m/s2
Amin -10 m/s?
Uref 6 m/s

N 10

q 1

p 1

r 2
Ad 20 m
AD 10 m
m 600 kg

The scenario considered twelve vehicles, with three on each
lane. The resulting energy consumption is listed on Table
3, compared with the proposed strategy, which was able to
reduce the spent energy in 6.70%. This means deploying
a smoother control, which implies in more comfort for the
users and increased autonomy.

Table 3. Comparison.

Controller Energy
Makarem and Gillet  367.282 kJ
Proposed 342.681 kJ

5. CONCLUSION

This work proposed a MPC for the coordination of CAVs
at intersections. The control minimizes a quadratic cost
function, following mixed-integer linear constraints for col-
lision avoidance, in order to guarantee minimum energy
consumption and smooth trajectories for the crossing ve-
hicles. It also establishes a priority list to enter the road

junction, based on the predicted arrival time at the inter-
sections. Vehicle models obey to second order dynamics
as well as their constraints. The simulations exploited
different circumstances like the number of vehicles, the
approaching for multiple lanes and the platoon formation.
The results showed that MPC is an efficient way to deal
with uncertain environments to trajectory planning and

tracking for CAVs.

For future researches, pending questions on the effect of
communication delay and the robustness of the MPC,
under model uncertainty and parameter variation, should
be addressed. Furthermore, the study must include opera-
tion on a combination of intersections, using a significant
number of CAVs to simulate real traffic conditions, also
given them the ability to make turns. Finally, the air drag
and friction will be considered in the platoon formation to
measure its influence on energy saving.
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