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Abstract: Friction efforts are present in almost all mechanical applications, due to contact between bodies 

and there are many important situations, in which they must be properly controlled. Among these, there 

are tire contact forces, which is focus of many studies in autonomous vehicles and control applications on 

vehicle systems, since the tire forces and moments are nonlinear and may be modelled as friction efforts. 

Any control synthesis focused to optimize its performance must be associated to state estimators, since the 

efforts depend on slip variables, as longitudinal slip and sideslip angle, and it is not possible to accurately 

measure them. So, in this paper, two state estimation algorithms are evaluated: Extended Kalman Filter 

(EKF) and Moving Horizon State Estimation (MHSE), which are applied to a quarter-car model for 

longitudinal dynamics. It is presented that, for both traction and braking phases, the MHSE is more 

accurate, since it takes explicitly into account the nonlinear model in the estimation process, independently 

of Jacobian sensitivities to discontinuities as is the case here. So, it is demonstrated that the developed 

estimator may be successfully associated to controllers with the objective of optimize tire performance in 

traction and braking control. 

Keywords: Extended Kalman Filter, Moving Horizon State Estimation, Tire Dynamics, Nonlinear Efforts, 
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1. INTRODUCTION 

In many mechanical applications, friction interactions are 

commonly found, once there is usually contact between 

bodies. In most cases, these interactions have a nonlinear 

nature, which difficult any attempt of control the system 

performance or mitigating their effects, when harmful. 

Coulomb friction, tire-road forces in vehicles and bit-rock 

interaction on perforation process are some examples of these 

effects. 

However, in a control application, it is not common to be 

possible to measure all states or all controlled variables. In 

these situations, it is usually used a state observer, which has 

as function estimate the states based on the measured 

variables. Among the state estimation algorithms, the Kalmar 

is one of the most known, such as one of its versions applied 

to nonlinear systems, the Extended Kalman Filter (EKF). On 

last decades, other algorithms have been developed, looking 

for more robustness and accuracy. The Moving Horizon 

Estimation (MHE) is one of these, defined by Alessandri et al. 

(2008) as a powerful and robust approach, suitable in systems 

with modelling uncertainties and numerical errors. It was 

developed as a dual of Model Predictive Control and estimates 

the states variables using a defined horizon of recent 

information and measures. These algorithms are studied in 

many different applications (Brembeck, 2019), so that it is 

possible to clearly understand its power and robustness.   

In vehicle systems, nonlinear observers are implemented on 

many control applications, but we may specially remark those 

dependents on tire dynamics, such as braking, traction and 

stability control. In most applications, the controlled variables, 

usually longitudinal slip, attitude angles, sideslip angle and 

others are impossible to measure, which justifies the 

implementation of observer-based control.  

In this context, Zareian et al. (2015) propose the use of EKF 

associated to Recursive Least Squares and Neural Networks in 

a methodology of estimation of road friction coefficient, which 

is a hardly obtaining parameter. Kayacan et al. (2018) present 

a control strategy for tracked field robots with receding 

horizon estimation and control (RHEC). The estimation 

algorithm is used for estimate states and parameters, and the 

receding horizon control is based on an adaptive system whom 

model is time varying. Li et al. (2014) present an EKF based 

estimator for sideslip angle for a vehicle stability control and 

the authors remark that its measure is complex and expensive, 

which justifies the estimation process. Sun et al. (2014) apply 

a nonlinear observer for state estimation on an ABS, due to 

nonlinearity of the friction force during brake. 

Boada et al. (2017) develop a new method for estimation of 

different states and parameters of a vehicle, using a 

constrained version of Kalman Filter to consider the physical 

limitations of the parameters. It is demonstrated by 

experimental results that the constraints are important to 

improve accuracy of the algorithm. Na et al. (2018) present 

two torque estimation methods for vehicle engines, using a 

proper dynamical model and air mass flow rate and engine 

speed, which are measurable. Jo et al. (2016) present a road 

slope and position estimator, which inputs are GPS data and 

mailto:elias.rossi@gmail.com
mailto:helon@puc-rio.br
mailto:simao@ime.eb.br
creacteve_michele
Texto digitado
DOI: 10.48011/asba.v2i1.1305



 

 

     

 

vehicle onboard sensors. The estimator proposed presents 

more accurate and reliable results, which is proven by 

experiments. Hsiao (2012) proposes an observer-based control 

scheme for traction force, robust to variations on road 

conditions and uncertainties on tire models. 

Nilsson et al. (2014) study the problem of estimating position 

and direction of a vehicle with a single camera since it is hardly 

dependent of image quality. So, the authors propose an 

estimator which combines onboard vehicle sensors and 

adjusted camera images, with a single-track model. Chen et al. 

(2011) remark the importance of tire-road friction coefficient 

estimation for autonomous vehicle applications and present an 

observer which does not depend on longitudinal motion 

information and is properly associated to an adaptive speed 

control. Singh et al. (2013) remark that simpler stability 

control performs well in many situations, but it is improved 

when a tire-road friction estimator is associated to the control 

scheme. In this way, the authors present a method in which is 

used frequency response of tire vibrations on the estimation 

algorithm. Hsu et al. (2009) remark the importance of 

knowledge of physical limits of parameters used on vehicle 

control, such as tire slip angle and maximum lateral force and 

propose a model-based estimation algorithm that estimates 

them using information from the applied steering torque. 

Du et al. (2015) construct a side-slip estimator based on a 

fuzzy system for lateral dynamics and the nonlinear Dugoff 

tire model, using measured yaw rate and estimated states. Li et 

al. (2019) use the same tire model to propose a side-slip 

estimation algorithm robust to inaccurate tire parameters. 

Recent research in vehicle control point the increased use of 

electric in-wheel motors, which allows many control strategies 

and simpler configurations of electric vehicles. These devices 

allow to reduce mass and to simplify transmission system, 

which is favorable in electric and autonomous vehicles. Zhao 

and Liu (2014) present a four degree-of-freedom nonlinear 

dynamical model of a four independent wheel electric vehicle, 

considering the measurements provided by modern sensors 

used on vehicles. An observer is associated to this model to 

estimate vehicle velocity and roll angle, since these variables 

must be controlled on stability control system. Feng et al. 

(2020) present two estimation algorithms based on moving 

horizon methods. The observer is applied on a four wheels 

electric robotic platform on different friction conditions. 

Jeon et al. (2018) propose a real-time constrained Kalman 

filter algorithm for estimation of the three tire forces on vehicle 

tires, namely, vertical, longitudinal and lateral forces in mobile 

robots equipped with wheel encoders and navigation sensors. 

Tire forces in the estimation process are modeled by Magic 

Formula, an empirical model developed by Pacejka (1992). 

Hong et al. (2014) present an application of Unscented Kalman 

Filter to estimation of inertial parameters of vehicles, which 

may be not accurately determined in design phase. Heidfeld et 

al. (2019) applied the same algorithm in a state and tire slip 

estimation for an electric vehicle with four independent 

wheels. 

Estimation algorithms are used also in path-tracking 

applications for autonomous vehicles. Brembeck (2019) 

remarks that state-estimators for autonomous vehicles are even 

more challenging, since the complexity of models and 

applications rises along the time. In this way, he presents a 

vehicle state observer to estimate position, yaw angle and their 

rates, with focus on path following and he discuss about the 

balance between model complexity and estimator 

performance. The author uses constrained versions of EKF and 

MHSE to better approximate the results to real data. Jalali et 

al. (2017) present a model predictive control scheme for 

tracking yaw rate with small lateral velocity and tire slips. The 

proposed method controls lateral velocity adjusting reference 

yaw rate, which reduces the size of model and computational 

complexity. They also present an estimation algorithm by 

means of vehicle kinematics and tire model. 

The state estimation is possible only if the system is fully 

observable. The condition of observability of a system is 

characterized by the possibility of observe all state variables 

by means of the measurement variables, or yet, if two different 

sets of states are related to two different sets of measured 

variables (Kou et al., 1973). The authors explore the 

observability of nonlinear systems, presenting two sufficient 

conditions to prove it. Katriniok and Abel (2015) present an 

EKF estimation for longitudinal and lateral velocities and yaw 

rate. They also present an approach for evaluate local 

observability online and a virtual measurement variable for 

instants in which local observability is lost. 

In this context, this work aims to present a comparative 

analysis between EKF and MHSE for estimation of 

longitudinal slip in ground vehicle control applications. We 

may observe on the literature review that the MHSE is not 

exploited on vehicle systems, and thus the main goal of the 

paper is to assess its performance in such applications. Both 

estimators are applied in the same conditions to estimate states 

of longitudinal dynamics of a quarter-car model, actuated by a 

braking or traction torque in the case of an in-wheel motor. In 

the estimation process, the state estimation algorithms are 

employed to estimate accurately the longitudinal slip and 

velocity of the vehicle. We observe in the literature review that 

the comparison has not been assessed thus far in such 

application, even if results in the literature show overall better 

results for the receding-horizon approaches (Alessandri et al., 

2008). It is important to remark that the longitudinal slip is 

important for traction and braking control strategies. The 

present paper aims at the evaluation of the performance of 

MHSE and EKF, their limitations and advantages, aiming at 

future control application on autonomous vehicles. The 

present work shows overall favourable results for the MHSE 

approach, despite its greater computational effort. 

At first, it is presented the theoretical basis of quarter-car 

longitudinal dynamic model, studying the longitudinal force 

formulations and the parameters employed. In the following 

section, the estimation processes, namely, the Extended 

Kalman Filter and the Moving Horizon State Estimation are 

defined, and their algorithms and evaluation metrics are 

presented. Then, it is demonstrated the data obtaining by 

means of a simulation with noisy measured variables and the 

results of the estimation process. Finally, the conclusions are 



 

 

     

 

commented, evaluating both estimators, and presenting the 

possibilities of future research. 

2. QUARTER-CAR DYNAMIC MODEL 

A quarter-car model may be effectively used for the study of 

nonlinear estimation. In this model, the vehicle is understood 

as a concentrated mass (with mass m) over a single wheel (with 

moment of inertia J), and there are no effects related to vertical 

or lateral dynamics. Are considered also the rolling resistance 

momentum and aerodynamic resistance (Figure 1).  

The first one affects the wheel dynamics and it is due to energy 

dissipation in the tire structure and rubber (Jazar, 2017). 

Mathematically, it may be described as proportional to normal 

load, according to the coefficient fR. The drag force acts on 

vehicle gravity center and is due to aerodynamic efforts. For 

simplification, we must assume that it is proportional to the 

square of longitudinal velocity according to C.  So, the 

dynamic equations of the system are: 

𝑚𝑣̇ = 𝐹𝑥 − 𝑅𝐴𝑒𝑟 = 𝐹𝑥 − 𝐶𝑣2 (1) 

𝐽𝜔̇ = 𝑇 − 𝑟𝐹𝑥 − 𝑀𝑅𝑜𝑙 = 𝑇 − 𝑟𝐹𝑥 − 𝑟𝑓𝑅𝑚𝑔 (2) 

 

Figure 1: Schematic model of quarter car 

In the wheel dynamic equation, T is the torque, which is 

considered the system input. The traction force Fx is defined 

as proportional to the normal load (in the quartel-car model 

defined as the weight) according to a factor µ (Savaresi, 2005). 

Then, treating c = C/m, the motion equations may be written 

as: 

𝑣̇ = 𝜇(𝜆)𝑔 − 𝑐𝑣2 (3) 

𝜔̇ =
𝑇

𝐽
− (𝜇(𝜆) + 𝑓𝑅)

𝑚𝑔𝑟

𝐽
 (4) 

The friction coefficient µ depends on the longitudinal slip λ, 

which may be define as: 

𝜆 =
𝜔𝑟 − 𝑣

𝑣
=

𝜔𝑟

𝑣
− 1 (5) 

We may note that during an acceleration, slip is positive, and 

during braking, it is negative and equation (5) demonstrate that 

λ must be on [-1,∞[. There are many formulations for the 

relationship between µ and λ, as the Julien Theory (Lopes et 

al., 2019), the Burckhardt model (Savaresi, 2005) and the 

Magic Formula (Pacejka, 1992). All of them depends on many 

parameters, which are empirically obtained. The last one has 

the advantage of being continuous in whole domain of slip, 

which does not happen on the others, reducing elapsed time of 

simulations and estimation processes. So, according to the 

Magic Formula model, µ may be written as: 

𝜇(𝜆) = 𝐴 sin(𝐵 atan(𝐶𝜆 − 𝐷(𝐶𝜆 − atan(𝐶𝜆)))) (6) 

The parameters A, B, C and D depends on road conditions on 

which the vehicle moves. Figure 2 presents the curves 

associated to many road conditions, which are obtained by 

approximation to data presented by Savaresi (2005). 

 
Figure 2: Friction coefficients for different pavements. 

Furthermore, we must define the longitudinal slip and the 

velocity as states of the system, since they are controlled 

variables on many applications, and the tire angular velocity 

as the output variable, since it is usually measured. In this way, 

from equation (5), the ω must be written in terms of v and λ 

(equation (7)) and we may obtain its time derivative (equation 

(8)). 

𝜔 =
𝑣(1 + 𝜆)

𝑟
 (7) 

𝜔̇ =
𝑣̇(1 + 𝜆) + 𝜆̇𝑣

𝑟
 (8) 

Generally, we may define a nonlinear state space model as: 

{
𝒙̇ = 𝑓(𝒙, 𝒖)

𝒛 = ℎ(𝒙, 𝒖) + 𝝃𝑛
 (9) 

In equation (9), x is the vector of states, u the input of the 

system, z are the outputs, that is, the measured states and 𝝃𝒏 is 

a white measurement noise, which may be considered on 

simulation process and data obtaining. Substituting equation 

(8) on (4), we obtain the nonlinear state space equations of the 

system. 

𝜆̇ =
𝑇𝑟

𝐽𝑣
−

(1 + 𝜆)

𝑣
(𝜇(𝜆)𝑔 − 𝑐𝑣2) − (𝜇(𝜆) + 𝑓𝑅)

𝑚𝑔𝑟2

𝐽𝑣
 (10) 

𝑣̇ = 𝜇(𝜆)𝑔 − 𝑐𝑣2 (11) 

𝜔 =
𝑣(1 + 𝜆)

𝑟
 (12) 

For Kalman filter application, it was remarked that the 

Jacobians of the nonlinear model should be defined. These 

  

 

    

    

 

    



 

 

     

 

Jacobians correspond, respectively, to state and output 

matrices of a linear state space model. For longitudinal 

dynamics, they are: 

𝑭 =
𝜕𝒇

𝜕𝒙
=

[
 
 
 𝜕𝜆̇

𝜕𝜆

𝜕𝜆̇

𝜕𝑣
𝜕𝑣̇

𝜕𝜆

𝜕𝑣̇

𝜕𝑣]
 
 
 

 (13) 

𝑯 =
𝜕𝒉

𝜕𝒙
= [

𝜕𝜔

𝜕𝜆

𝜕𝜔

𝜕𝑣
] = [

𝑣

𝑟

1 + 𝜆

𝑟
] (14) 

As mentioned on the previous section, the estimation of all 

states is possible if, and only if, the system is full observable. 

Specifically on the quarter car model, we may calculate the 

observability matrix based on the Jacobians of the nonlinear 

model, with the classical observability matrix, defined as: 

𝒪 = [
𝐻
𝐻𝐹

] (15) 

On the simulation process, it is possible to note that the 

observability matrix has full rank in all time. Consequently, all 

states are observables and, in a first analysis, both estimation 

algorithms may be successfully employed. 

3. STATE ESTIMATION METHODS 

In a control application, it is not possible to always measure all 

states of the system. In these cases, an estimator must be 

defined, with the objective of estimate all states in each instant, 

based on output variables, that is, the measured ones. The 

existence of an estimator is conditioned to the observability of 

the system, which indicates that all states may be observed by 

means of the output variables. 

In this work, two methods are explored: Extended Kalman 

Filter (EKF) and the Moving Horizon State Estimation 

(MHSE). The Extended Kalman Filter is one of nonlinear 

applications of the Kalmar Filter, developed for linear systems 

(Bar-Shalom et al., 2004).  

The EKF is applied to a discrete-time system, such as: 

{
𝒙(𝑖 + 1) = 𝒇(𝒙(𝑖), 𝒖(𝑖))

𝑧(𝑖 + 1) = 𝒉(𝒙(𝑖 + 1))
 (16) 

Briefly, the algorithm for EKF is described on the sequence 

below, for a state estimate (𝑥̂(𝑖|𝑖)), that is the system state at 

sample i, estimated on sample i. It is important to remark that 

the matrices P, R and Q must be initialized as diagonal types, 

with large traces, to assure the convergence of the filter. 

1. Jacobians: 

𝐹(𝑖) =
𝜕𝑓

𝜕𝑥𝑥=𝑥(𝑖|𝑖)
 (17) 

𝐻(𝑖) =
𝜕ℎ

𝜕𝑥𝑥=𝑥(𝑖|𝑖)
 (18) 

2. State prediction covariance: 

𝑃(𝑖 + 1|𝑖) = 𝐹(𝑖)𝑃(𝑖|𝑖)𝐹(𝑖)𝑇 + 𝑄(𝑖) (19) 

3. Residual covariance 

𝑆(𝑖 + 1) = 𝑅(𝑖) + 𝐻(𝑖)𝑃(𝑖 + 1|𝑖)𝐻(𝑖)𝑇  (20) 

4. Filter gain 

𝑊(𝑖 + 1) = 𝑃(𝑖 + 1|𝑖)𝐻(𝑖)𝑇𝑆(𝑖 + 1)−1 (21) 

5. State prediction 

𝑥̂(𝑖 + 1|𝑖) = 𝑓(𝑥̂(𝑖|𝑖), 𝑢(𝑖)) (22) 

6. Measurement prediction 

𝑧̂(𝑖 + 1|𝑖) = ℎ(𝑥̂(𝑖 + 1|𝑖)) (23) 

7. Measurement residual 

𝜈(𝑖 + 1) = 𝑧(𝑖 + 1) − 𝑧̂(𝑖 + 1|𝑖) (24) 

8. Updated state estimate 

𝑥̂(𝑖 + 1|𝑖 + 1) = 𝑥̂(𝑖 + 1|𝑖) + 𝑊(𝑖 + 1)𝜈(𝑖 + 1) (25) 

9. Updated state covariance 

𝑃(𝑖 + 1|𝑖 + 1)
= 𝑃(𝑖 + 1|𝑖) −     𝑊(𝑖 + 1)𝑆(𝑖 + 1)𝑊(𝑖 + 1)𝑇 

(26) 

The MHSE is most recent and have its development related to 

Model Predictive Control, since there is a duality between 

regulation and estimation processes (Alessandri, 2008). In this 

method, the estimation of states in each instant of time is 

obtained by means a prediction of the states N instants before 

and the estimation of the states in this window of time using 

the dynamic model and the measured data. In this case, 

continuous or discrete-time models may be used. The 

algorithm of MHSE is: 

1. Prediction of states at t-N 

𝑥̅(𝑡 − 𝑁|𝑡)

= 𝑓(𝑥̂(𝑡 − 𝑁 − 1|𝑡 − 1), 𝑢(𝑡 − 𝑁 − 1)) 
(27) 

2. State estimation at t-N 

𝑥̂(𝑡 − 𝑁|𝑡)

= 𝑎𝑟𝑔𝑚𝑖𝑛 (𝜇‖𝑥̂(𝑡 − 𝑁|𝑡) − 𝑥̅(𝑡 − 𝑁|𝑡)‖

+ ∑ ‖ℎ(𝑥̂(𝑖|𝑡)) − 𝑧(𝑖)‖

𝑡

𝑖=𝑡−𝑁

) 

(28) 

3. State estimation at the horizon 

𝑥̂(𝑖 + 1|𝑡) = 𝑓(𝑥̂(𝑖|𝑖), 𝑢(𝑖))  𝑖 = 𝑡 − 𝑁,… , 𝑡 − 1 (29) 

4. State estimation at t 

𝑥̂(𝑡|𝑡) = 𝑓(𝑥̂(𝑡 − 1|𝑡), 𝑢(𝑡 − 1)) (30) 

On the algorithm, it is important to remark some observations. 

The first one is related to the parameter µ, which indicates the 

confidence on the state prediction, that is, with this parameter, 

it may be differently considered the dynamic model and state 

prediction or the measured data, on the cost function. The 



 

 

     

 

second observation is related to the optimization process, 

which must be defined as so fast it is possible, since, in a 

control application, the estimation must occur into the time 

between two samples. 

The evaluation of both methods may be done with some 

metrics (Alessandri et al., 2008). One of them is the Root Mean 

Square Error, which defines if the variables are quite equal in 

all time instants, for n simulations. It is defined also the 

Asymptotic Root Mean Square Error (ARMSE), which 

measure the RMSE on the final window of time S, considering 

T the final simulation time.  

𝑅𝑀𝑆𝐸(𝑡) = (∑
‖𝑒(𝑡, 𝑖)‖2

𝑛

𝑛

𝑖=1

)

1
2⁄

 (31) 

𝐴𝑅𝑀𝑆𝐸 = ∑
1

𝑆 + 1
(∑

‖𝑒(𝑡, 𝑖)‖2

𝑛

𝑛

𝑖=1

)

1
2⁄𝑇

𝑇−𝑆

 (32) 

 

4. SIMULATION AND STATE ESTIMATION 

The quarter-car model is simulated with parameters of a 

typical passenger vehicle, moving on dry asphalt. To evaluate 

the system and the estimators, its dynamics is simulated 

considering an input torque defined with a proportional control 

law, so that the vehicle reaches a reference speed of 20 m/s. 

Then: 

𝑇 = 𝑘𝑝(𝑣𝑟𝑒𝑓 − 𝑣) (33) 

Considering this condition, the input torque considered on the 

simulated system is presented on Figure 3. 

 
Figure 3: Input torque (Nm) 

On the simulations, it is considered that output variable, that is 

the wheel rotation, is measured with different amplitude noises 

(𝝃𝑛). So, the main objective of the estimators is to obtain the 

states along the time, based on this measured one. Evidently, 

as the system is full observable, when no noise is considered 

on the measurement devices, the states are precisely estimated. 

We must remark that, for EKF, this precision depends on the 

sample time adopted on discretization process and are close to 

zero, since the Jacobians have discontinuities. For MHSE, in 

this situation, the RMSE is equal zero.  

In a second scenario, in which it is supposed that the 

measurement noise (𝝃𝑛) has normal distribution with standard 

deviation of 1%, we have the results presented on the Figure 4 

and Figure 5. In this situation, the input torque previously 

presented is applied on the wheel. It is possible to observe that 

it is suitable to reach a constant velocity, even with a steady-

state error, which is no focus on this paper. The most important 

result we may remark is that the non-measured variables are 

estimated with good accuracy.  

 
Figure 4: Estimated longitudinal velocity (m/s) 

 

 
Figure 5: Estimated wheel rotation (rad/s) 

For the simulation above, in which the initial conditions are 

well-known and the wheel rotation is measured with a noise of 

1%, RMSE is presented on Table 1.  

Table 1: RMSE results with well-known initial conditions 

State EKF MHSE Reduction 

λ 0.0615 0.0025 95.935 % 

𝑣 0.0210 0.0023 89.048 % 

            

     

    

 

   

    

    

    

 
  
 
 
 

            

     

 

 

  

  

  

  

 
 
  
 
  
  
  

  
 

    

   

    



 

 

     

 

We must do two remarks about these results. The first one is 

related to slip estimation. As there is no relation between the 

definition of input torque and slip, the initial values of 

longitudinal slip are very high, which represents the situation 

of the wheel slipping on the road. This may be observed on 

Figure 4, since the wheel rotation rises so quickly. In a second 

phase, the rotation falls, reducing the longitudinal slip to 

values between 0 and 1. The second remark is related to the 

Jacobians. The state equation related to the longitudinal slip 

presents many discontinuities points, mainly related to 

situations in which the velocity is zero. In this way, when this 

state is very low, the Jacobian F presents high values, harming 

the estimation process and also compromising the 

convergence. To prevent this situation, the same constraints 

applied to state variables are applied during estimation 

process. As the MHSE does not depend on derivatives, it is not 

affected by this situation and, so, its results are much better, 

presenting high relative reductions on RMSE. Figure 6 

presents the estimated longitudinal slip in a converged 

simulation. It is important to remark that the states are 

estimated based on a noisy signal and compared with the 

supposed real one, which is noiseless. It is remarkable also the 

nearest values presented by the MSHE result (Figure 7). 

 
Figure 6: Estimated longitudinal slip. 

 
Figure 7: Estimated longitudinal slip, in detail. 

In other analysis, we may realize the estimation process with 

different initial conditions, defined by uniformly distributed 

random numbers on interval [0,1], many times. This way, it is 

possible to observe its tendency in more sampled data and to 

verify if the estimators are capable to correct states even if the 

initial conditions are badly defined or unknown.  

Table 2 presents the evaluation of the mean and the standard 

deviation of the ARMSE for longitudinal slip (λ), which is one 

of the non-measured states and is used on control strategies. In 

this table are presented the simulation results for different 

noise standard deviations, after the convergence of RMSE(t), 

briefly defined as ARMSE (equation (32)).  

Table 2: ARMSE analysis for longitudinal slip (λ) estimation  

Algorithm EKF MHSE 

𝝃𝑛 = 0.001 
Mean 0.0084 4.8188e-5 

St. Dev. 4.5271e-5 2.4763e-5 

𝝃𝑛 = 0.01 
Mean 0.4275 5.1430e-4 

St. Dev. 0.0043 2.9450e-4 

𝝃𝑛 = 0.05 
Mean 2.7254 0.0027 

St. Dev. 0.0363 0.0016 

 

A more detailed analysis may be done interpreting the 

RMSE(t), as defined by equation (31), and that is presented on 

Figure 8, Figure 9 and Figure 10 for, respectively, standard 

deviations of 0.001, 0.01 and 0.05 on the measure noise. 

 

Figure 8: RMSE(t) for measurement noise of 0.1% 

On the first scenario, it may be noted that in both methods the 

values of errors are larger in the initial samples, because it is 

supposed that the initial conditions are unknown and are 

treated as different to zero, when they really have this value on 

the simulation for data obtaining. Then, the RMSEs fall and 

converge for both algorithms, but for the MHSE, the value is 

lower than for EKF, denoting that the first one has a better 

accuracy. Besides that, the MHSE converges more quickly 

than EKF. In this way, we may affirm that the MHSE corrects 

badly defined initial conditions better than EKF. The last one 

            

     

 

     

    

     

    

     

    

 
 
 
 

   

    



 

 

     

 

presents an irregular behavior, with high variation before 

converging and even the final value is higher than MHSE one.    

 
Figure 9: RMSE(t) for measurement noise of 1% 

 
On the second scenario, the convergence occurs in the same 

configuration, that is, both converges, but MHSE converge to 

lower values in shorter times compared to EKF. Besides that, 

we may observe that the converged value of EKF is higher than 

the first case. The same aspect is observed on the last scenario 

(Figure 10). 

 

 
Figure 10: RMSE(t) for measurement noise of 5% 

 

For the velocity estimation, the results are presented on Table 

3. The results are similar to the longitudinal slip, which also 

demonstrates that MHSE has better performance in 

comparison to EKF. 

In a general way, EKF do not present good results, when 

compared to MHSE in nonlinear mechanical systems. It may 

be noted that EKF is strongly affected by measurement noises, 

presenting a RMSE on the converged region higher than 

MHSE, mainly due to discontinuities on state equations. The 

second method is more robust to discontinuities on Jacobians 

and state equation, and the errors and time to convergence 

presented are lower. So, we may conclude about the higher 

performance of MHSE on nonlinear mechanical systems with 

discontinuities, as friction efforts. 

Table 3: ARMSE analysis for velocity (v) estimation  

Algorithm EKF MHSE 

𝝃𝑛 = 0.001 
Mean 0.9756 0.0014 

St. Dev. 0.0041 7.2911e-4 

𝝃𝑛 = 0.01 
Mean 3.8729 0.0147 

St. Dev. 0.0154 0.0083 

𝝃𝑛 = 0.05 
Mean 14.3821 0.0788 

St. Dev. 0.0491 0.0478 

 

5. CONCLUSIONS 

We may conclude about the efficiency of the MHSE in 

comparison to EKF on state estimation for nonlinear 

applications, especially with friction and discontinue efforts. 

In the studied case, both algorithms estimate the non-measured 

states. However, in a performance analysis, the MHSE 

presents better results, especially when it is considered the 

measurement errors and uncertainties in initial conditions of 

the system. 

In future works, it is suggested the application of the 

estimation algorithm in complete vehicle models, considering 

all wheels and its lateral dynamics, in which it is possible to 

evaluate the estimator behavior on different maneuvers. In this 

sense, all tire longitudinal slip must be accurately estimated, 

which possibilities suitable control strategies for agile and 

high-speed path tracking.  

Other future possible work is the definition of more complex 

control strategies with the objective of achieving prescribed 

velocities with optimized longitudinal slip. We must remark 

that in autonomous vehicle applications, state observers allow 

the possibility to define suitable controller for path tracking, 

agility, or stability.  

It is also suggested the application of the developed estimators 

in other mechanical applications in which the friction efforts 

must be mitigated or estimated properly, especially on 

discontinuous systems, as, for example, with Coulomb 

friction, in which MHSE must present better performance 

compared to Kalman Filter approaches, since it is robustness 

demonstrated on the results section. 
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