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Abstract: In many aircraft applications, specially on an antiskid control design, it is important to understand 

and consider the gear walk phenomenon, which is characterized by the deflection on the landing gear 

structure due the high braking force acting at the tire contact with the ground. This phenomenon is observed 

on drop tests, and its prediction on landing gear design depends on an adequate evaluation of the equivalent 

stiffness and damping of the structure, which is difficult, since they depend on the mechanism 

configuration. In this paper, it is presented a grey-box identification methodology for estimating these 

parameters of the landing gear, based on simulated data of a drop test. As the drop tests are mandatory 

obligatory for certificating modern aircraft according to e.g. Federal Aviation Regulations (FARs) by the 

Federal Aviation Administration (FAA), we hope to introduce a method based on measurements that are 

available at the design phase. The method will be useful to decrease men/hour costs and increase reliability 

by enabling better and more accurate anti-skid design. 

Keywords: Grey box modelling, Recursive identification, Identification for control, Aerospace, Vehicle 

dynamic systems. 

 

1. INTRODUCTION 

Landing gears are critical parts of the hydromechanical 

subsystem of an aircraft. During braking, their purpose is to 

dissipate kinetic energy efficiently in order to ensure proper 

aircraft performance. The anti-skid system orchestrates 

braking given the inputs by the pilot. Its primary purpose is to 

avoid wheels to block and thus maximize brake efficiency. 

However, landing gears have rich nonlinear dynamics which 

difficults the design of anti-skid control laws (Rahmani and 

Behdinan, 2020). Torsional and translational vibrations are 

observed when the mechanical dynamics of such complex 

multibody systems is measured. Shimmy happens when the 

torsional structural dynamics is poorly damped (Rahmani and 

Behdinan, 2019), while the gear walk phenomenon is observed 

when translational deflection amplitude in the landing gear is 

relatively high due to the braking force acting at the tire contact 

with the ground (Gualdi et. al., 2008). In aircraft braking 

simulations, we must efficiently evaluate or predict the gear 

walk phenomenon. The deflection observed during gear walk 

is limited by the stiffness and damping of the ensemble 

composed of suspension and structure of the landing gear. In 

this context, it is of utmost importance to be able to model and 

simulate efficiently the aforementioned phenomena so that 

design meets specified requirements.  

At a robust design for antiskid control, the gear walk 

phenomenon must be considered, since the estimation of 

braking force depends on the angular velocity of the wheel and 

the velocity of the wheel hub. Pritchard (2001) remarks the 

relevance of the study of the dynamics of landing gear, mainly 

due the effects of vibration and shimmy induced by braking, 

highlighting its criticality on aircraft safety. Krüger et. al. 

(1997) give a complete review of landing gear requirements 

and operational conditions. They describe the drop test and 

remark its importance to analyze the stiffness and inertial of 

each element, to evaluate the behavior of shock absorber and 

of the wheel and tire. Sinou et. al. (2006) study an 

experimental approach of friction-induced vibration on aircraft 

brake, remarking the number of researches on this subject. Luo 

and Zhao (2018) propose a spatial landing gear mechanism to 

achieve higher stiffness and higher strength, demonstrating 

that these properties are closely dependents of the geometry 

and the constraints between the bodies. 

We may observe many studies that are dedicated to 

understanding the dynamics of landing gears and improve its 

performance, since it is a critical system on aircraft security 

(Krüger et. Al., 1997). Moreover, the physical phenomena 

involving the tires have important effects over the system 

dynamics and they must be considered on developed models. 

Van Slagmaat (1992) develops a nonlinear model for landing 

gear simulation, using the magic formula for tire dynamics. 

Yadav and Singh (1995) present an optimal anti-skid braking 

control based on a one-step ahead prediction of the braking 

force required, aiming to reduce the landing run. Gualdi et. al. 

(2008) feature a multi-body landing gear model, 

demonstrating the effect of gear walk, to be employed as a 

design tool for anti-skid landing gear braking control. D’Avico 

et. al. (2017) presents a control-oriented model of landing gear, 

using the Burckhardt tire model for determining the braking 

forces. This model is validated experimentally, as presented 

for D’Avico et. al. (2018). The suppression of gear walk 

phenomenon is studied by Yin et. al. (2019), who propose an 

anti-skid control that minimize the maximum gear walk angle, 

satisfying other constraints. Jiao et. al. (2019) propose an anti-

skid brake control with identification of the runway 

characteristics and the tire conditions, so that it is possible to 
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estimate the maximum friction force. They obtain, as result, a 

considerable improvement of the braking efficiency when 

compared to algorithms based only on wheel deceleration. 

Chen et. al. (2018) present an improved braking control 

algorithm, which considerers both the wheel deceleration and 

longitudinal slip, to enhance the robustness and the efficiency 

of braking process. Tourajizadeh and Zare (2016) propose a 

robust and optimal nonlinear control of shimmy vibration, 

remarking the importance of minimizing this vibration on 

aircraft performance and security. Somakumar and 

Chandrasekhar (1999) propose an intelligent anti-skid brake 

controller based on neural network, with learning, nonlinear 

mapping and pattern-recognition abilities. It defines the brake 

torque after analyzing the runway condition, so that the 

braking is optimum. 

The design of a landing gear is evaluated on many tests, among 

which there is the drop test. It consists in lifting the landing 

gear in a specific test bed and dropping it from a height that 

will cause a desired impact velocity. Among the measurements 

commonly made, the horizontal force is very important as it 

affects directly the gear walk phenomenon (Wang et. al., 

2017). Xue et. al. (2012) present a method of optimizing the 

damper coefficient of an amphibious landing gear by means of 

simulation and drop test, which illustrates the large application 

of this test on aircraft design. Shixing et. al. (2011) study a 

drop test of a landing gear with a MRF (magnetorheological 

fluid) damper, assessing the influence of this component on the 

dynamics and performance of the landing gear. This kind of 

damper is also focus of Li et. al. (2015), who present a 

magneto-rheological damper structure for landing gear, 

commenting its main advantages, such as adjustable damping 

force, simple structure and independence of external energy. 

Wei et. al. (2014) develop a more complex model for landing 

gear fall dynamics. The model presented has two degrees of 

freedom and adds viscous friction and grip effects to the 

Coulomb friction model. 

The drop test may also be used for evaluating the gear walk 

and predicting the structural stiffness and damping of the 

landing gear, by identification techniques. Fallah et. al. (2008) 

demonstrate the importance and influence of structural 

parameters in the design and control of vibrations on aircraft 

landing gears. This phenomenon is not considered on ground 

vehicles, because the braking forces are not of the same scale. 

The drop test measurement system is also focus of some recent 

researches, as the presented by Pytka et. al. (2019). They 

feature a dynamometer wheel for landing gear tests. The 

measurement system is designed for obtaining the vertical load 

and longitudinal forces acting in the wheel, as well as the 

moments around all the axes. 

Batill and Bacarro (1988) feature a nonlinear identification of 

a single degree of freedom of landing gear system, applying 

Newtonian Iteration. It considers the suspension and structure 

both linear and nonlinear, when is used the hydropneumatic 

damper on the airplane. The identification process on 

mechanisms is most explored on robotic systems. These 

methods are well explored by Wu et. al. (2010), who give an 

overview of dynamic parameter identification of serial and 

parallel robots, summarizing the main methods used and 

advantages and disadvantages of each one. Oliviers and 

Campion (1997) propose a methodology for parameters 

identification in a nonlinear model of a robot with flexible 

arms. So, both inertial and elastic parameters are estimated, 

and the kinematics must consider the displacements due to 

flexibility of the bodies.  Díaz-Rodríguez et. al. (2010) present 

a methodology for dynamic parameters identification of a 3 

degree of freedom (DOF) parallel robot. They explain that not 

all the parameters may be properly identified, and they apply 

the weighted least squares method for determining the relevant 

ones. This method is also used by Bahloul et. al. (2018) on an 

identified model for a 6-DOF industrial robot, based on the 

inverse dynamic equations. Gao et. al. (2018) present a 

parameter identification method based on Denavit-Hartenberg 

model, validated on a 6-DOF industrial robot. They suggest a 

modified least squares algorithm, designed for minimize the 

residual movement uncertainties and the application of 

singular value decomposition for determining the parameters 

most relevant. 

This paper aims to present a nonlinear identification 

methodology for a four degree of freedom landing gear model 

that includes the gear walk phenomenon. The proposed 

identification is based on simulated drop test data, as we have 

seen its importance and application on aircraft design. 

Moreover, all the variables used on identification may be 

measured or estimated on this test, allowing its application on 

experimental data. In the aforementioned state of the art 

review, we note that the identification process is applied on 

low-complexity models or specific components of the landing 

gear. So, the main contribution of this paper is evaluating of a 

grey-box identification methodology on an enhanced 

complexity model, aiming to be able to precisely identify 

parameters on a real drop test data. We propose a analytical 

model of the mechanism and identify its parameters using a 

combined Kalman filter and derivatives approximation 

technique. 

The remainder of this paper is organized as follows. In Section 

2 we present the analytical modeling of the landing gear and 

its equations of motion using the Lagrange formulation. In the 

following section, the grey-box identification algorithms 

devised for this work are presented, highlighting their 

application on multibody systems parameters estimation. 

Subsequently, we explain the landing gear simulation and how 

we obtain the corresponding measured variables applied on the 

identification process. Finally, the results of the dynamic 

simulation and of the parameters estimation are presented, 

explaining the relationship with the physical phenomena and 

analyzing the precision of the identification. At the conclusion, 

we comment about future research possibilities and the use of 

different methods of modelling.   

  

2. LANDING GEAR SYSTEM 

The landing gear is modelled, in this work, as a planar 

mechanism, with concentrated inertias. The stiffness and 

damping of its structure and suspension system are considered 

as a rotational spring and damper, which represents the 

stiffness and damping of the structure. In the system, there are 

three bodies: a concentrated mass representing the airplane 

with coordinates (x,z), a bar with length L representing the 



 

 

     

 

structure of the landing gear, with coordinates (xb, zb, θ), and 

the wheel with coordinates (xw, zw, ϕ), radius R, and an applied 

braking torque T, as shown in Figure 1.  

 

Figure 1: Landing gear model 

We use the Lagrange formulation in order to obtain the 

dynamic equations of motion for the landing gear. To this end, 

the kinematic relations between the generalized coordinators 

are presented as 

{
  
 

  
 𝑥̇𝑏 = 𝑥̇ −

𝐿

2
𝜃̇ cos 𝜃

𝑧̇𝑏 = 𝑧̇ +
𝐿

2
𝜃̇ sin 𝜃

𝑥̇𝑤 = 𝑥̇ − 𝐿𝜃̇ cos 𝜃

𝑧̇𝑤 = 𝑧̇ + 𝐿𝜃̇ sin 𝜃

 (1) 

We may rewrite some parameters, for simplifying equations, 

as follows: 

𝑀1 = (𝑚 +𝑚𝑏 +𝑚𝑤) (2) 

𝑀2 = (
𝑚𝑏

4
+𝑚𝑤) 𝐿

2 + 𝐼𝑏  (3) 

𝑀3 = (𝑚𝑏 + 2𝑚𝑤)𝐿 (4) 

So, the kinetic energy Ek and potential energy Ep of the system 

may be described as: 

𝐸𝑘 =
1

2
𝑀1(𝑥

2 + 𝑧2) +
1

2
𝑀2𝜃̇

2 + 

+
1

2
𝑀3(−𝑥̇𝜃̇ cos 𝜃 + 𝑧̇𝜃̇ sin 𝜃) +

1

2
𝐽𝜙̇2 

(5) 

𝐸𝑝 = 𝑀1𝑔𝑧 − 𝑀3𝑔 cos 𝜃 − 𝑚𝑤𝑔ℎ +
𝑘(𝜃 − 𝜃0)

2

2
 (6) 

 

 

The Lagrange Equation is defined at Eq. 7, where qi indicates 

each generalized coordinate and Qi the external forces or 

moments related to qi. 

𝑑

𝑑𝑡

𝜕

𝜕𝑞𝑖̇
(𝐸𝑘 − 𝐸𝑝) −

𝜕

𝜕𝑞𝑖
(𝐸𝑘 − 𝐸𝑝) = 𝑄𝑖  (7) 

Appling the Lagrange Equation for each generalized 

coordinate, namely x, z, θ and ϕ, it is possible to obtain the 

system dynamic equations. 

𝑀1𝑥̈ − 𝑀3𝜃̈ cos 𝜃 + 𝑀3𝜃̇
2 sin 𝜃 = 0 (8) 

𝑀1𝑧̈ + 𝑀3𝜃̈ sin 𝜃 + 𝑀3𝜃̇
2 cos 𝜃 + 𝑀1𝑔 = 𝐹𝑧 (9) 

−𝑀3𝑥̈ cos 𝜃 + 𝑀3𝑧̈ sin 𝜃 + 𝑀2𝜃̈ + 𝑀3𝑔 sin 𝜃

+ 𝑘(𝜃 − 𝜃0) + 𝑏𝜃̇ = 𝐹𝑧𝐿 sin 𝜃 + 𝐹𝑏𝐿 cos 𝜃 
(10) 

𝐽𝜙̈ + 𝑐𝜙̇ = 𝐹𝑏𝑅 − 𝑇 (11) 

The braking force is not considered on the first equation, 

because the prototype on test is confined. So, this force is 

equilibrated by the kinematic constraint imposed by the 

apparatus. The braking force is considered proportional to the 

vertical load, which is due the elastic condition of the tire. So, 

it may be written as: 

𝐹𝑏 = 𝜇𝐹𝑧 (12) 

The parameter μ depends on the slip (λ), which relates the 

wheel hub velocity and the wheel angular velocity as 

𝜆 =
𝑥̇𝑤 − 𝜙̇𝑅

𝑥̇𝑤
 (13) 

There are many models relating the coefficient μ and the slip 

λ, among which, one of the most widespread is the Burckhardt 

model, described by Harifi et. al. (2008).  

𝜇(𝜆) = 𝜗1(1 − 𝑒
−𝜆𝜗2) − 𝜆𝜗3 (14) 

The relationship between μ and λ for dry asphalt is presented 

in Figure 2. For this kind of ground, the parameters ϑ1, ϑ2 and 

ϑ3 are, respectively, 1.2801, 23.99 and 0.52 (Harifi et. al., 

2008).  

 

Figure 2: Relationship between the friction coefficient and 

slip 
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Having defined the analytical model, we are ready to state the 

parameter estimation algorithm.  

 

3. GREY-BOX ESTIMATION ALGORITHM 

The grey-box identification has as an objective the 

determination of unknown parameters, through measured or 

estimated states. When the ne dynamic equations of a 

multibody system are known, it is possible to identify np linear 

independent parameters that allow to rewrite the equations as 

a matrixial multiplication, for each sample j: 

𝛗(𝑗)Θ = 𝑓(𝑗) (15) 

where 𝛩 ∈ 𝑅𝑛𝑝 is a vector with the smallest set of linear 

independent parameters of the model, 𝝋(𝑗) ∈ 𝑅𝑛𝑒×𝑛𝑝 is a 

matrix with only known terms, as measured or estimated 

positions, velocities and accelerations. The vector 𝑓 ∈ 𝑅𝑛𝑒  is 

composed by independent terms, which includes external 

forces and moments and others that are not related to unknown 

parameters. 

Since the measured or estimated states may be affected by 

noise, it is important that Φ and F are as large as possible, 

considering all points available. So, concatenating the matrix 

equations, the system may be described as 

[
 
 
 
 
𝛗(1)
⋮

𝛗(j)
⋮

𝛗(N)]
 
 
 
 

Θ =

[
 
 
 
 
𝑓(1)
⋮

𝑓(j)
⋮

𝑓(N)]
 
 
 
 

 (16) 

Generally, the equation 16 may be written as 

𝚽Θ = 𝐹 (17) 

which may be then treated effectively. The identification 

problem resembles to obtain the vector of parameters Θ with 

measurements made in Φ and F. For the grey-box 

identification, many methods may be used for estimating the 

vector of parameters Θ. The simplest is the Batch Least 

Squares (LS) algorithm, or the Penrose-Moore pseudo-inverse. 

So, the estimated vector is: 

Θ̂ = (Φ𝑇Φ)−1Φ𝑇𝐹 (18) 

The recursive approach of Least Squares may already be used 

in this grey-box identification, with suitable precision. With 

some modifications this method converges to the Kalman 

Filter (KF) for parameter estimation, which may be employed 

for online or offline identification (Söderström and Stoica, 

1988). This algorithm is recursive and described on these 

equations, for each sample j 

𝜀(𝑗) = 𝐹(𝑗) − 𝐹̂(𝑗) = 𝐹(𝑗) − Φ(𝑗)Θ̂(𝑗 − 1) (19) 

𝐾(𝑗) =
𝑃(𝑗 − 1)Φ(𝑗)𝑇

[1 + Φ(𝑗)𝑃(𝑗 − 1)Φ(𝑗)𝑇]
 (20) 

𝑃(𝑗) = 𝑃(𝑗 − 1) − 𝐾(𝑗)Φ(𝑗)𝑃(𝑗 − 1) + 𝑅1 (21) 

Θ̂(𝑗) = Θ̂(𝑗 − 1) + 𝐾(𝑗)𝜀(𝑗) (22) 

where P is the covariance matrix, ε is the prediction error and 

K is the gain. In each iteration, the vector of parameters is 

corrected with a factor proportional to the error between the 

actual and the estimated vector F. In order to execute the 

identification procedure given by the equations (19)-(22), the 

matrix P(0) and the vector 𝛩̂(0) must be initiated at iteration j 

= 0. In most cases, P(0) is properly defined as a diagonal 

matrix with large entries and the initial estimation of vector 𝛩̂ 

may be defined as zero, so that the estimator does not 

converges to a local minimum (Billings, 2013). 

It is important to note that the trace of P decreases along the 

iterations and tends to zero if R1 is not considered. So, when 

the system is time-varying or in online applications, it is 

important to define a matrix R1 with large entries, so that the 

trace of P remains in a large value. In offline applications or 

time-invariant systems, R1 may be defined as zero. 

 

4. DROP TEST SIMULATIONS 

For obtaining the data used on identification, the complete 

dynamics of landing gear mechanism is simulated, such 

explained previously in the section 2. The simulation aims to 

reproduce the drop test. This test consists of simulate the 

moment the aircraft landing gear touches the ground, only with 

vertical movement. The initial conditions are set to be equal 

the real test. So, the wheel receives an initial angular velocity, 

so that there is braking force and the ensemble is released from 

a certain height. 

The dynamical equations are, then, numerically solved so that 

the generalized coordinates and their first derivatives are 

found. The accelerations associated to each coordinate must be 

estimated as: 

𝑞̈𝑘 =
𝑞̇𝑘+1 − 𝑞̇𝑘−1

2∆𝑡
 (23) 

The tires are considered elastic elements, with internal 

damping. So, in the simulation, the vertical load is calculated 

as proportional to its vertical deformation and deformation 

rate. However, since the normal force on the ground is 

measured on drop tests, its value is computed on the 

simulation. Beyond that, the set of measured variables on drop 

test includes also the vertical acceleration of the sprung mass 

and the vertical displacement of the wheel hub, which may 

lead to the angle between the suspension and the sprung mass, 

and its derivatives. 

The results of the simulation of the drop test, with the actual 

parameters are presented in the following section. 

 

5. RESULTS 

In the present section, we describe the results of applying the 

grey-box estimation procedure for the landing gear case with 

simulated drop-test data. The present grey-box identification 

is based on simulated data from a landing gear drop test. The 

main goal is to determine the unknown parameters from the 

model, such as the inertial and, mainly, the equivalent damping 



 

 

     

 

and stiffness of the ensemble of suspension and structure of 

the landing gear. 

The results of the dynamical equations are the shown in figures 

3 and 4. As the landing gear structure works similarly to a 

vehicular suspension, it is expected that the z-coordinate of the 

sprung mass presents a damped oscillatory movement. 

 

Figure 3: Vertical displacement of the sprung mass 

 

Figure 4: Vertical velocity of sprung mass 

The angle θ, defined between the structure and the vertical 

axis, has a nonzero value initially and increases toward the 

maximum value when the wheel touches the ground and the 

tire force begins to actuate, producing a momentum that acts 

positively at this angle, as seen in figure 5. The angle θ is 

limited by the stiffness of the structure and the suspension 

spring. 

Since the dynamical equations are known, it is possible to 

write them as a matrix multiplication. So, the Lagrange 

equations obtained for the landing gear dynamics could be 

written as: 

[

𝑥̈
𝑧̈ + 𝑔
0
0

0
0
𝜃̈
0

−𝜃̈ cos 𝜃 + 𝜃̇2 sin 𝜃
𝜃̈ sin 𝜃 + 𝜃̇2 cos 𝜃

−𝑥̈ cos 𝜃 + 𝑧̈ sin 𝜃 + 𝑔 sin𝜃
0

0
0

𝜃 − 𝜃0
0

0
0
𝜃̇
0

0
0
0
𝜙̈

0
0
0
𝜙̇

]

[
 
 
 
 
 
 
𝑀1

𝑀2

𝑀3

𝑘
𝑏
𝐽
𝑐 ]
 
 
 
 
 
 

= [

0
𝐹𝑧

𝐹𝑧𝐿 sin 𝜃 + 𝐹𝑧𝜇𝐿 cos 𝜃
𝐹𝑧𝜇𝑅 − 𝑇

] 

(24) 

 

Figure 5: Angle between the vertical axis and the 

concentrated mass of the structure of landing gear 

Once it is supposed the vector in the right side is known, by 

means of measured or estimated variables, we may affirm that 

there are two decoupled systems, which are the sprung mass 

with suspension and the landing gear wheel. We may assume 

this because the parameters of each system do not affect the 

dynamics of the other, as observed in the matrix in the left side 

of the equation 24. The parameters associated to the wheel are 

usually known or they may be easily measured, so that we may 

neglect the last equation and the parameters J and c on the 

identification process. 

It is important to note that it is not possible to predict the mass, 

length and moment of inertia of each body, but only the 

combination of them, described by the parameters M1, M2 and 

M3, in equations 4, 5 and 6. The set of estimated parameters 

should be as small as possible and any parameter should not 

be linear combination of others.  

We may also do a deduction related to the horizontal 

displacement of the sprung mass. This variable remains so 

close to zero in all the simulation and the real drop test, 

because it is realized on a confined space. So, even if this 

variable is estimated, its value should be so small that could be 

lost in the associated noise, harming the identification process. 

Consequently, the horizontal displacement of the wheel hub is 

also small, and the tire has a slip near to 1 in all the test. Given 

the above, the equation 24 may be adapted to: 

[
𝑧̈ + 𝑔 0 𝜃̈ sin 𝜃 + 𝜃̇2 cos 𝜃 0 0

0 𝜃̈ 𝑧̈ sin 𝜃 + 𝑔 sin 𝜃 𝜃 − 𝜃0 𝜃̇
]

[
 
 
 
 
𝑀1
𝑀2

𝑀3

𝑘
𝑏 ]
 
 
 
 

= [
𝐹𝑧

𝐹𝑧𝐿 sin 𝜃 + 𝐹𝑧𝜇𝐿 cos 𝜃
] 

(25) 

Using all the data generated on the dynamics, the process of 

estimation becomes precise as the results show, reducing the 

error of estimation on both approaches. In the Kalman Filter 

estimation, the initial covariance matrix is defined as a 

diagonal matrix with 1e3 as entries. The estimated vector of 

parameters is initialized as zero. The table 1 presents the 

comparative analysis of the results, considering that there is no 

measurement noise. 



 

 

     

 

Table 1: Estimation results without measurement noise 

Parameter 

(Unit) 
Value LS LS Error (%) KF 

KF Error  

(%) 

M1 (ton) 10.2 10.2000 0.0002 10.2001 0.0005 

M2 (kg.m²) 126 124.6235 -1.0925 124.6235 -1.0924 

M3 (kg.m) 150 151.8450 1.2300 151.8456 1.2304 

k (kN/rad) 450 446.4083 -0.7981 446.4083 -0.7982 

b (kN.s/rad) 90 89.8058 -0.2157 89.8058 -0.2157 

 

The efficiency of the proposed method is evidenced on the 

small values of the errors of estimation. Since the main goal is 

to determine the angular stiffness of the ensemble suspension 

and structure, it is important to evaluate its error, which is less 

than 1% in terms of absolute value. The errors associated to 

inertial parameters are due to the approximations adopted on 

this methodology. However, as they are small, it may be 

affirmed that these approximations do not harm the estimation. 

It should be observed also that both approaches present similar 

results. So, the definition of which one must be used may 

follow other criteria that not the precision. 

Considering that the measurement may be affected by noises, 

we present two different results. In the first one, presented on 

table 2, it is considered that the measured data has normal 

distribution with standard deviation of 0.1%. In the second 

one, presented on table 3, the standard deviation adopted is 

1%. 

All errors associated to estimated parameters, including 

stiffness and damping of the landing gear, have the same 

magnitude of the case without noise. These errors are small 

and adequate, which denotes that the proposed methodology 

remains efficient, even if there are measure noise associated to 

the sensors. 

Table 2: Estimation results with measurement noise of 0.1% 

Parameter  
(Unit) 

Value LS LS Error (%) KF 
KF Error 

(%) 

M1 (ton) 10.2 10.2000 0.0002 10.2000 0.0005 

M2 (kg.m²) 126 124.6341 -1.0841 124.6341 -1.0841 

M3 (kg.m) 150 151.9179 1.2786 151.9184 1.2790 

k (kN/rad) 450 446.3996 -0.8001 446.3996 -0.8001 

b (kN.s/rad) 90 89.8052 -0.2164 89.8052 -0.2164 

Table 3: Estimation results with measurement noise of 1.0% 

Parameter 
(Unit) 

Value LS LS Error (%) KF 
KF Error 

(%) 

M1 (ton) 10.2 10.2001 0.0008 10.2001 0.0011 

M2 (kg.m²) 126 124.6797 -1.0478 124.6797 -1.0478 

M3 (kg.m) 150 156.4681 4.3121 156.4687 4.3125 

k (kN/rad) 450 445.6982 -0.9560 445.6982 -0.9560 

b (kN.s/rad) 90 89.7471 -0.2810 89.7471 -0.2810 

It may be observed that in the second scenario the precision of 

the estimation of inertial parameters is worse than in the other 

cases, specially for the parameter M3, but the error is not high 

(less than 5%). However, the stiffness and damping of the 

suspension of the landing gear are estimated with errors of 

same magnitude of the ones observed on the noise-free 

scenario, which leads to conclude that the methodology 

proposed is robust, even if the sensors have not a measurement 

noise. These parameters are the main ones in the analysis of 

the gear walk phenomenon. 

The figure 6 shows a comparative between the measured and 

simulated data for the angle of the structure, using parameters 

estimated presented on table 3. 

 

Figure 6: Comparison between measured and estimated angle 

of the landing gear structure 

 

6. CONCLUSIONS 

This paper presented a methodology that may be used 

effectively on the identification of structural parameters of 

landing gears. Even on scenarios with large scale of 

measurement noise, the stiffness and damping of landing gear 

structure are predicted with small deviations, which do not 

affect the gear walk simulation. Since the simulated data was 

obtained from a complete model, which considerer even the 

tire dynamics, we presume that the methodology may be 

applied on a real drop test data. This application is important 

for practical robust control design of aircraft braking systems. 

There are two main future possibilities of contributions related 

to the present paper. The first one is the application of the 

identification process with the formulation provided by 

different methods of dynamic modelling, specially bond 

graphs. This technique allows the integration of models of the 

different systems, by the coupling of power inputs and outputs 

(Karnopp et. al., 2012). So, it is possible to construct and 

identify parameters of an entire aircraft, as well as associate 

predictive control algorithms for its automation.  

The second one is the improvement of the identification 

process. In complex systems, with many parameters, it is 

important to demonstrate and understand which ones are 

identifiable, and then, apply identification process focused on 



 

 

     

 

these ones. The identifiability analysis enables one to infer 

whether the estimation of the parameters based on 

measurements are unique, thus granting greater confidence in 

the parameters estimates with respect to fitting error 

amplitudes. In other words, the identifiability property holds if 

a set of model parameters will map to different set of 

measurements (Grewal and Glover, 1976). In the case of 

landing gear modeling, it is important to have such theoretical 

confirmation as this model is used to certificate aircrafts. 
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